Vue 3

Application & Component Instances

#Creating an Application Instance

Every Vue application starts by creating a new application instance with the C reateApp
function:

const app = Vue.createApp({ /* options */

The application instance is used to register 'globals' that can then be used by components within
that application. We'll discuss that in detail later in the guide but as a quick example:

const app = Vue.createApp
app.component(‘Searchlnput', SearchinputComponent
app.directive('focus', FocusDirective
app.use(LocalePlugin
Most of the methods exposed by the application instance return that same instance, allowing for
chaining:
Vue.createApp
component('Searchinput', SearchlnputComponent

directive('focus', FocusDirective
use(LocalePlugin

#The Root Component

The options passed to CIreateApp are used to configure the root component. That component
is used as the starting point for rendering when we mount the application.
An application needs to be mounted into a DOM element. For example, if we want to mount a Vue

application into <div 1d="app"></div>, we should pass #app:
const RootComponent = { /* options */

const app = Vue.createApp(RootComponent
const vm = app.mount('#app'

Unlike most of the application methods, MOUNT does not return the application. Instead it
returns the root component instance.
Although not strictly associated with the MVVVM pattern , Vue's design was partly inspired by it. As
a convention, we often use the variable VM (short for ViewModel) to refer to a component
instance.
While all the examples on this page only need a single component, most real applications are
organized into a tree of nested, reusable components. For example, a Todo application's
component tree might look like this:
Root Component

L— TodoList

— Todoltem

| |— DeleteTodoButton
|_'— EditTodoButton
TodolListFooter
— ClearTodosButton
L— TodoListStatistics

Each component will have its own component instance, V. For some components, such as

TodoItem, there will likely be multiple instances rendered at any one time. All of the
component instances in this application will share the same application instance.

We'll talk about the component system in detail later. For now, just be aware that the root
component isn't really any different from any other component. The configuration options are the
same, as is the behavior of the corresponding component instance.

#Component Instance Properties

Earlier in the guide we met data properties. Properties defined in data are exposed via the
component instance:

https://qgithere.com/doc/vue3.pdf Page 1 of 129

https://githere.com/doc/vue.pdf
https://en.wikipedia.org/wiki/Model_View_ViewModel
https://v3.vuejs.org/guide/component-basics.html

Vue 3

const app = Vue.createApp
data
return { count: 4

)

const vm = app.mount('#app'
console.loglivm.count) // => 4

There are various other component options that add user-defined properties to the component

instance, such as methods, props, computed, inject and setup. We'll discuss
each of these in depth later in the guide. All of the properties of the component instance, no
matter how they are defined, will be accessible in the component's template.

Vue also exposes some built-in properties via the component instance, such as $attrs and

$emit. These properties all have a $ prefix to avoid conflicting with user-defined property
names.

#Lifecycle Hooks

Each component instance goes through a series of initialization steps when it's created - for
example, it needs to set up data observation, compile the template, mount the instance to the
DOM, and update the DOM when data changes. Along the way, it also runs functions called
lifecycle hooks, giving users the opportunity to add their own code at specific stages.

For example, the created hook can be used to run code after an instance is created:

Vue.createApp
data
return | count: 1

created
// "this’ points to the vm instance
console.log(‘countis: ' + this.count) // => "count is: 1"

1
There are also other hooks which will be called at different stages of the instance's lifecycle, such
as mounted, updated, and unmounted. All lifecycle hooks are called with their this context

pointing to the current active instance invoking it.
TIP

Don't use arrow functions on an options property or callback, such as created: () =>
console. log(this.a) orvm.$watch('a', newValue => this.myMethod()). Since an
arrow function doesn't have a this, this will be treated as any other variable and lexically
looked up through parent scopes until found, often resulting in errors such as Uncaught
TypeError: Cannot read property of undefined or Uncaught TypeError:
this.myMethod is not a function.

#Lifecycle Diagram
Below is a diagram for the instance lifecycle. You don't need to fully understand everything going
on right now, but as you learn and build more, it will be a useful reference.

https://qgithere.com/doc/vue3.pdf Page 2 of 129

https://v3.vuejs.org/api/options-lifecycle-hooks.html#created
https://v3.vuejs.org/api/options-lifecycle-hooks.html#mounted
https://v3.vuejs.org/api/options-lifecycle-hooks.html#updated
https://v3.vuejs.org/api/options-lifecycle-hooks.html#unmounted
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://githere.com/doc/vue.pdf

Vue 3 app = Vue.createApp(
app.mount(el)

Init
events & lifecycle

[beforeCreate]4 """""""""""""

Init
injections & reactivity

[created]4 -------------------------

Has
“template” option?

Compile template Compile el’s innerHTML
into render function * as template *

[beforeMount]4 -------------------------

Create app.$el and
replace “el” with it

beforeUpdate

[mounted]{ ------------------------- when data B
- change A

Virtual DOM
re-rendered
and patch

when
app.unmount() [updated]

is called

[beforeUnmount]4

[unmounted]4

* Template compilation is performed ahead-of-time if using
a build step, e.g., with single-file components.

https://qgithere.com/doc/vue3.pdf Page 3 of 129

https://githere.com/doc/vue.pdf

Vue 3

Template Syntax

Vue.js uses an HTML-based template syntax that allows you to declaratively bind the rendered
DOM to the underlying component instance's data. All Vue.js templates are valid HTML that can
be parsed by spec-compliant browsers and HTML parsers.

Under the hood, Vue compiles the templates into Virtual DOM render functions. Combined with
the reactivity system, Vue is able to intelligently figure out the minimal number of components to
re-render and apply the minimal amount of DOM manipulations when the app state changes.

If you are familiar with Virtual DOM concepts and prefer the raw power of JavaScript, you can
also directly write render functions instead of templates, with optional JSX support.

#Interpolations
#Text

The most basic form of data binding is text interpolation using the "Mustache" syntax (double
curly braces):

span>Message: {{ msg }}</span

The mustache tag will be replaced with the value of the MSJ property from the corresponding

component instance. It will also be updated whenever the MS(J property changes.
You can also perform one-time interpolations that do not update on data change by using the v-
once directive, but keep in mind this will also affect any other bindings on the same node:

span v-once>This will never change: {{ msg }}</span

#Raw HTML
The double mustaches interprets the data as plain text, not HTML. In order to output real HTML,
you will need to use the V—htmLl directive:

p>Using mustaches: {{ rawHtml }}</p
p>Using v-html directive: </p

The contents of the SPan will be replaced with the value of the rawHtm 1 property, interpreted

as plain HTML - data bindings are ignored. Note that you cannot use V—html to compose
template partials, because Vue is not a string-based templating engine. Instead, components are
preferred as the fundamental unit for Ul reuse and composition.

TIP

Dynamically rendering arbitrary HTML on your website can be very dangerous because it can
easily lead to XSS vulnerabilities. Only use HTML interpolation on trusted content and never on
user-provided content

#Attributes

Mustaches cannot be used inside HTML attributes. Instead, use a V—b1nd directive:
div v-bind:id="dynamicld div
In the case of boolean attributes, where their mere existence implies true, v—bind works a
little differently. In this example:
<button v-bind:disabled="isButtonDisabled">Button</button>

If isButtonDisabled has the value of null or undefined, the disabled attribute will not even be
included in the rendered <button> element.

#Using JavaScript Expressions

So far we've only been binding to simple property keys in our templates. But Vue.js actually
supports the full power of JavaScript expressions inside all data bindings:

{{number + 1 }} {{ ok ? 'YES' : 'NO' }} {{ message.split("').reverse().join('")
1

div v-bind:id=""list-' + id div
These expressions will be evaluated as JavaScript in the data scope of the current active
instance. One restriction is that each binding can only contain one single expression, so the
following will NOT work:

https://qgithere.com/doc/vue3.pdf Page 4 of 129

https://v3.vuejs.org/guide/render-function.html
https://v3.vuejs.org/guide/template-syntax.html#interpolations
https://v3.vuejs.org/guide/template-syntax.html#text
https://v3.vuejs.org/api/directives.html#v-once
https://v3.vuejs.org/api/directives.html#v-once
https://v3.vuejs.org/guide/template-syntax.html#raw-html
https://v3.vuejs.org/api/directives.html#v-html
https://en.wikipedia.org/wiki/Cross-site_scripting
https://v3.vuejs.org/guide/template-syntax.html#attributes
https://v3.vuejs.org/api/directives.html#v-bind
https://v3.vuejs.org/guide/template-syntax.html#using-javascript-expressions
https://githere.com/doc/vue.pdf

Vue 3

<!-- this is a statement, not an expression: -->
{{vara=1}}

<!-- flow control won't work either, use ternary expressions -->
{{ if (ok) { return message } }}

#Directives

Directives are special attributes with the V— prefix. Directive attribute values are expected to be a

single JavaScript expression (with the exception of V—T0 I and V—0n, which will be discussed
later). A directive's job is to reactively apply side effects to the DOM when the value of its
expression changes. Let's review the example we saw in the introduction:

p v-if="seen">Now you see me</p

Here, the v—1T directive would remove/insert the <[> element based on the truthiness of the
value of the expression Seen.
#Arguments
Some directives can take an "argument", denoted by a colon after the directive name. For
example, the V—b 1nd directive is used to reactively update an HTML attribute:

a v-bind:href="url"> ... </a

Here href is the argument, which tells the V—b 1nd directive to bind the
element's href attribute to the value of the expression U™ L.
Another example is the V—0N directive, which listens to DOM events:

a v-on:click="doSomething"> ... </a

Here the argument is the event name to listen to. We will talk about event handling in more detalil
too.

#Dynamic Arguments

It is also possible to use a JavaScript expression in a directive argument by wrapping it with
square brackets:

<!--

Note that there are some constraints to the argument expression, as explained

in the "Dynamic Argument Expression Constraints" section below.

-->

a v-bind:[attributeName]="url"> ... </a
Here attributeName will be dynamically evaluated as a JavaScript expression, and its
evaluated value will be used as the final value for the argument. For example, if your component
instance has a data property, att ributeName, whose value is ""href", then this binding

will be equivalent to v—bind:href.
Similarly, you can use dynamic arguments to bind a handler to a dynamic event name:

a v-on:[eventName]-"doSomething"> ... </a
In this example, when eventName's valueis "' focus", v—on: [eventName] will be
equivalent to V—0n: focus.
#Modifiers
Modifiers are special postfixes denoted by a dot, which indicate that a directive should be bound
in some special way. For example, the . prevent modifier tells the V—0N directive to
callevent.preventDefault() on the triggered event:

form v-on:submit.prevent="onSubmit">...</form

You'll see other examples of modifiers later, for V—0N and for v—model, when we explore
those features.

#Shorthands
https://qgithere.com/doc/vue3.pdf Page 5 of 129

https://v3.vuejs.org/guide/template-syntax.html#directives
https://v3.vuejs.org/guide/template-syntax.html#arguments
https://v3.vuejs.org/guide/template-syntax.html#dynamic-arguments
https://v3.vuejs.org/guide/template-syntax.html#modifiers
https://v3.vuejs.org/guide/events.html#event-modifiers
https://v3.vuejs.org/guide/forms.html#modifiers
https://v3.vuejs.org/guide/template-syntax.html#shorthands
https://githere.com/doc/vue.pdf

Vue 3

The V— prefix serves as a visual cue for identifying Vue-specific attributes in your templates. This
is useful when you are using Vue.js to apply dynamic behavior to some existing markup, but can

feel verbose for some frequently used directives. At the same time, the need for the V— prefix
becomes less important when you are building a SPA, where Vue manages every template.

Therefore, Vue provides special shorthands for two of the most often used directives, V—
bind and v—on:
#v—-bind Shorthand

<!-- full syntax -->
a v-bind:href="url"> ... </a

<!-- shorthand -->
a :href="url"> ... </a

<!I-- shorthand with dynamic argument -->
a:[key]="url"> ... </a

#v-on Shorthand

<!-- full syntax -->
a v-on:click="doSomething"> ... </a

<!-- shorthand -->
a @click="doSomething"> ... </a

<!-- shorthand with dynamic argument -->

a @[event]="doSomething"> ... </a
They may look a bit different from normal HTML, but : and @ are valid characters for attribute
names and all Vue-supported browsers can parse it correctly. In addition, they do not appear in
the final rendered markup. The shorthand syntax is totally optional, but you will likely appreciate it
when you learn more about its usage later.
From the next page on, we'll use the shorthand in our examples, as that's the most common
usage for Vue developers.

#Caveats
#Dynamic Argument Value Constraints

Dynamic arguments are expected to evaluate to a string, with the exception of NU LL. The special
value NU L 1 can be used to explicitly remove the binding. Any other non-string value will trigger a
warning.

#Dynamic Argument Expression Constraints

Dynamic argument expressions have some syntax constraints because certain characters, such
as spaces and quotes, are invalid inside HTML attribute names. For example, the following is
invalid:
<!-- This will trigger a compiler warning. -->

a v-bind:['foo' + bar]="value"> ... </a

We recommend replacing any complex expressions with a computed property, one of the most
fundamental pieces of Vue, which we'll cover shortly.
When using in-DOM templates (templates directly written in an HTML file), you should also avoid
naming keys with uppercase characters, as browsers will coerce attribute names into lowercase:
<!--
This will be converted to v-bind:[someattr] in in-DOM templates.
Unless you have a "someattr" property in your instance, your code won't work.
-->

a v-bind:[someAttr]="value"> ... </a

https://qgithere.com/doc/vue3.pdf Page 6 of 129

https://githere.com/doc/vue.pdf
https://en.wikipedia.org/wiki/Single-page_application
https://v3.vuejs.org/guide/template-syntax.html#v-bind-shorthand
https://v3.vuejs.org/guide/template-syntax.html#v-on-shorthand
https://v3.vuejs.org/guide/template-syntax.html#caveats
https://v3.vuejs.org/guide/template-syntax.html#dynamic-argument-value-constraints
https://v3.vuejs.org/guide/template-syntax.html#dynamic-argument-expression-constraints
https://v3.vuejs.org/guide/computed.html

Vue 3

#JavaScript Expressions
Template expressions are sandboxed and only have access to a whitelist of globals such

asMath and Date. You should not attempt to access user defined globals in template
expressions.

Data Properties and Methods
#Data Properties

The data option for a component is a function. Vue calls this function as part of creating a new
component instance. It should return an object, which Vue will then wrap in its reactivity system

and store on the component instance as $data. For convenience, any top-level properties of
that object are also exposed directly via the component instance:
const app = Vue.createApp

data
return | count: 4

)

const vm = app.mount('#app'

console.logivm.$data.count) // => 4
console.log(ivm.count /=>4

// Assigning a value to vm.count will also update $data.count
vm.count = 5
console.logivm.$data.count) // => 5

// ... and vice-versa
vm.$data.count = 6
console.logivm.count) // => 6

These instance properties are only added when the instance is first created, so you need to
ensure they are all present in the object returned by the data function. Where necessary,

use NULL, undefined or some other placeholder value for properties where the desired
value isn't yet available.
It is possible to add a new property directly to the component instance without including it

in data. However, because this property isn't backed by the reactive $data object, it won't
automatically be tracked by Vue's reactivity system.

Vue uses a $ prefix when exposing its own built-in APIs via the component instance. It also
reserves the prefix __ for internal properties. You should avoid using names for top-
level data properties that start with either of these characters.

#Methods

To add methods to a component instance we use the methods option. This should be an
object containing the desired methods:

const app = Vue.createApp

data
return | count: 4

methods:
increment

https://qgithere.com/doc/vue3.pdf Page 7 of 129

https://v3.vuejs.org/guide/template-syntax.html#javascript-expressions
https://github.com/vuejs/vue-next/blob/master/packages/shared/src/globalsWhitelist.ts#L3
https://v3.vuejs.org/guide/data-methods.html#data-properties
https://v3.vuejs.org/guide/reactivity.html
https://v3.vuejs.org/guide/data-methods.html#methods
https://githere.com/doc/vue.pdf

Vue 3

// "this” will refer to the component instance
this.count++

)

const vm = app.mount('#app'
console.loglivm.count) // => 4
vm.increment

console.logivm.count) // => 5

Vue automatically binds the Th1s value for methods so that it always refers to the component
instance. This ensures that a method retains the correct Th 1S value if it's used as an event
listener or callback. You should avoid using arrow functions when defining methods, as that
prevents Vue from binding the appropriate th1s value.

Just like all other properties of the component instance, the methods are accessible from
within the component's template. Inside a template they are most commonly used as event
listeners:

button @click="increment">Up vote</button

In the example above, the method 1ncrement will be called when the <button> is clicked.
It is also possible to call a method directly from a template. As we'll see shortly, it's usually better
to use a computed property instead. However, using a method can be useful in scenarios where
computed properties aren't a viable option. You can call a method anywhere that a template
supports JavaScript expressions:

span :title="toTitleDate(date)
{{ formatDate(date) }}
span

If the methods toTit leDate or formatDate access any reactive data then it will be
tracked as a rendering dependency, just as if it had been used in the template directly.
Methods called from a template should not have any side effects, such as changing data or
triggering asynchronous processes. If you find yourself tempted to do that you should probably
use a lifecycle hook instead.

#Debouncing and Throttling

Vue doesn't include built-in support for debouncing or throttling but it can be implemented using
libraries such as Lodash.
In cases where a component is only used once, the debouncing can be applied directly

within methods:

script src="https://unpkg.com/lodash@4.17.20/lodash.min.js script
script
Vue.createApp
methods:
// Debouncing with Lodash
click: _.debounce(function
// ... respond to click ...
500

mount('#app’
script

https://qgithere.com/doc/vue3.pdf Page 8 of 129

https://v3.vuejs.org/guide/computed.html
https://v3.vuejs.org/guide/instance.html#lifecycle-hooks
https://v3.vuejs.org/guide/data-methods.html#debouncing-and-throttling
https://lodash.com/
https://githere.com/doc/vue.pdf

Vue 3

However, this approach is potentially problematic for components that are reused because they'll
all share the same debounced function. To keep the component instances independent from each

other, we can add the debounced function in the C reated lifecycle hook:
app.component(‘'save-button'
created
// Debouncing with Lodash
this.debouncedClick = _.debouncel(this.click, 500

unmounted
// Cancel the timer when the component is removed
this.debouncedClick.cancel

methods:
click
// ... respond to click ...

template:
button debouncedClick
Save
button

Computed Properties and Watchers
#Computed Properties

In-template expressions are very convenient, but they are meant for simple operations. Putting
too much logic in your templates can make them bloated and hard to maintain. For example, if we
have an object with a nested array:

Vue.createApp
data
return
author:

name: 'John Doe'

books:
'Vue 2 - Advanced Guide'
'Vue 3 - Basic Guide'
'Vue 4 - The Mystery'

)

And we want to display different messages depending on if aut hor already has some books or
not

https://qgithere.com/doc/vue3.pdf Page 9 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/computed.html#computed-properties

Vue 3

div id="computed-basics

p>Has published books:</p

span>{{ author.books.length > 0 ? 'Yes' : 'No' }}</span
div

At this point, the template is no longer simple and declarative. You have to look at it for a second

before realizing that it performs a calculation depending on author.books. The problem is
made worse when you want to include this calculation in your template more than once.

That's why for complex logic that includes reactive data, you should use a computed property.
#Basic Example

div id="computed-basics

p>Has published books:</p

span>{{ publishedBooksMessage }}</span
div

Vue.createApp
data
return
author:

name: 'John Doe'

books:
‘Vue 2 - Advanced Guide'
'Vue 3 - Basic Guide'
‘Vue 4 - The Mystery'

computed:
// a computed getter
publishedBooksMessage
// "this’ points to the vm instance
return this.author.books.length > 0 ? 'Yes' : '‘No'

mount('#computed-basics'

Here we have declared a computed property pub LishedBooksMessage.

Try to change the value of DOOKS array in the application data and you will see

how pub lishedBooksMessage is changing accordingly.

You can data-bind to computed properties in templates just like a normal property. Vue is aware

that vm. publishedBooksMessage depends on vim. author.books, so it wil
update any bindings that depend

on vm.publishedBooksMessage when vim.author.books changes. And the best
part is that we've created this dependency relationship declaratively: the computed getter
function has no side effects, which makes it easier to test and understand.

https://qgithere.com/doc/vue3.pdf Page 10 of 129

https://v3.vuejs.org/guide/computed.html#basic-example
https://githere.com/doc/vue.pdf

Vue 3

#Computed Caching vs Methods
You may have noticed we can achieve the same result by invoking a method in the expression:
p>{{ calculateBooksMessage() }}</p

// in component
methods:
calculateBooksMessage
return this.author books.length > 0 ? 'Yes' : '‘No'

Instead of a computed property, we can define the same function as a method. For the end result,
the two approaches are indeed exactly the same. However, the difference is that computed
properties are cached based on their reactive dependencies. A computed property will only re-
evaluate when some of its reactive dependencies have changed. This means as long

as author.books has not changed, multiple access to

the pub lishedBooksMessage computed property will immediately return the previously
computed result without having to run the function again.

This also means the following computed property will never update, because Date. now() is
not a reactive dependency:

computed:

now
return Date.now

In comparison, a method invocation will always run the function whenever a re-render happens.

Why do we need caching? Imagine we have an expensive computed property List, which
requires looping through a huge array and doing a lot of computations. Then we may have other

computed properties that in turn depend on L15T. Without caching, we would be
executing L 15 t’s getter many more times than necessary! In cases where you do not want
caching, use a method instead.
#Computed Setter
Computed properties are by default getter-only, but you can also provide a setter when you need
it:
/...
computed:
fullName:
/] getter
get
return this firstName + ' ' + this.lastName

// setter
set(newValue
const names = newValue split(* '
this firstName = names|0
this.lastName = names names.length - 1

}
I oar
https://qgithere.com/doc/vue3.pdf Page 11 of 129

https://v3.vuejs.org/guide/computed.html#computed-caching-vs-methods
https://v3.vuejs.org/guide/computed.html#computed-setter
https://githere.com/doc/vue.pdf

Vue 3

Now when you run VM. fu L IName = "John Doe', the setter will be invoked
and vm. firstName and vm. LastName will be updated accordingly.

#Watchers

While computed properties are more appropriate in most cases, there are times when a custom
watcher is necessary. That's why Vue provides a more generic way to react to data changes

through the wat ch option. This is most useful when you want to perform asynchronous or
expensive operations in response to changing data.

For example:
div id="watch-example
p
Ask a yes/no question:
input v-model="question
p

p>{{ answer }}</p
div

<!-- Since there is already a rich ecosystem of ajax libraries -->
<!-- and collections of general-purpose utility methods, Vue core -->
<!-- is able to remain small by not reinventing them. This also -->
<!-- gives you the freedom to use what you're familiar with. -->
script src="https://cdn.jsdelivr.net/npm/axios@0.12.0/dist/axios.min.js script
script
const watchExampleVM = Vue.createApp
data
return
question: "
answer: 'Questions usually contain a question mark. ;-)'

watch:
// whenever question changes, this function will run
qguestion(newQuestion, oldQuestion
if (newQuestion.indexOf('?") > -1
this.getAnswer

methods:
getAnswer
this.answer = 'Thinking...'
axios
get('https://yesno.wtf/api'
then(response =>
this.answer = response.data.answer

catch(error =>
this.answer = 'Error! Could not reach the API. ' + error

https://qgithere.com/doc/vue3.pdf Page 12 of 129

https://v3.vuejs.org/guide/computed.html#watchers
https://githere.com/doc/vue.pdf

Vue 3

mount('#watch-example'
script

In this case, using the wat C h option allows us to perform an asynchronous operation (accessing
an API) and sets a condition for performing this operation. None of that would be possible with a
computed property.

In addition to the wat ch option, you can also use the imperative vm.$watch API.

#Computed vs Watched Property

Vue does provide a more generic way to observe and react to data changes on a current active
instance: watch properties. When you have some data that needs to change based on some other

data, it is tempting to overuse Wat ch - especially if you are coming from an AngularJS
background. However, it is often a better idea to use a computed property rather than an

imperative wat ch callback. Consider this example:
div id="demo">{{ fullName }}</div

const vm = Vue.createApp
data
return
firstName: 'Foo'
lastName: 'Bar’
fullName: 'Foo Bar'

watch:
firstName(val
this.fullName = val + ' ' + this.lastName

lastName(val
this.fullName = this.firstName + ' ' + val

mount('#demo’

The above code is imperative and repetitive. Compare it with a computed property version:
const vm = Vue.createApp
data
return
firstName: 'Foo'
lastName: 'Bar’

computed:
fullName
return this.firstName + ' ' + this.lastName

mount('#demo’
Much better, isn't it?

https://qgithere.com/doc/vue3.pdf Page 13 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/api/instance-methods.html#watch
https://v3.vuejs.org/guide/computed.html#computed-vs-watched-property

Vue 3

Class and Style Bindings

A common need for data binding is manipulating an element's class list and its inline styles. Since

they are both attributes, we can use V—b1nd to handle them: we only need to calculate a final
string with our expressions. However, meddling with string concatenation is annoying and error-

prone. For this reason, Vue provides special enhancements when V—bind is used

with cLass and style. In addition to strings, the expressions can also evaluate to objects or
arrays.

#Binding HTML Classes
#0bject Syntax

We can pass an object to : C Lass (short for v—=bind: c lass) to dynamically toggle classes:
div :class="{ active: isActive } div

The above syntax means the presence of the aCt 1Ve class will be determined by
the truthiness of the data property 1SACtive.
You can have multiple classes toggled by having more fields in the object. In addition,
the : C Lass directive can also co-exist with the plain C LaSs attribute. So given the following
template:
div
class="static
:class="{ active: isActive, 'text-danger': hasError }
></div>
And the following data:
data
return
isActive: true
hasError: false

It will render:
div class="static active div

When 1SActive or haSError changes, the class list will be updated accordingly. For
example, if NASError becomes true, the class list will become 'static active
text—danger".
The bound object doesn't have to be inline:

div :class="classObject div

data
return
classObject:
active: true
‘text-danger": false

This will render the same result. We can also bind to a computed property that returns an object.
This is a common and powerful pattern:

div :class="classObject div

https://qgithere.com/doc/vue3.pdf Page 14 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/class-and-style.html#binding-html-classes
https://v3.vuejs.org/guide/class-and-style.html#object-syntax
https://developer.mozilla.org/en-US/docs/Glossary/Truthy
https://v3.vuejs.org/guide/computed.html

Vue 3

data
return
isActive: true
error: null

}

computed:
classObject
return
active: this.isActive && !this.error
‘text-danger": this.error && this.errortype === 'fatal’

}
#Array Syntax

We can pass an array to : C Lass to apply a list of classes:
div :class="[activeClass, errorClass] div

data
return
activeClass: 'active'
errorClass: 'text-danger

Which will render:
div class="active text-danger div

If you would like to also toggle a class in the list conditionally, you can do it with a ternary
expression:

div :class="[isActive ? activeClass : ', errorClass] div

This will always apply errorClass, but will only

apply activeClass when 1sActive is truthy.
However, this can be a bit verbose if you have multiple conditional classes. That's why it's also
possible to use the object syntax inside array syntax:

div :class="[{ active: isActive }, errorClass] div

#With Components
This section assumes knowledge of Vue Components. Feel free to skip it and come back later.

When you use the C 1ass attribute on a custom component with a single root element, those
classes will be added to this element. Existing classes on this element will not be overwritten.
For example, if you declare this component:

const app = Vue.createApp

app.component(‘my-component'
template: "<p class="foo bar">Hil</p>

)

Then add some classes when using it:

div id="app
my-component class="baz boo my-component
div

https://qgithere.com/doc/vue3.pdf Page 15 of 129

https://v3.vuejs.org/guide/class-and-style.html#array-syntax
https://v3.vuejs.org/guide/class-and-style.html#with-components
https://v3.vuejs.org/guide/component-basics.html
https://githere.com/doc/vue.pdf

Vue 3

The rendered HTML will be:
p class="foo bar baz boo">Hi</p

The same is true for class bindings:
my-component :class="{ active: isActive } my-component
When 1SActive is truthy, the rendered HTML will be:
p class="foo bar active">Hi</p
If your component has multiple root elements, you would need to define which component will
receive this class. You can do this using $att rs component property:

div id="app
my-component class="baz my-component
div

const app = Vue.createApp

app.component('my-component'
template:
<p :class="$attrs.class">Hil</p>
span>This is a child component</span

)

You can learn more about component attribute inheritance in Non-Prop Attributes section.

#Binding Inline Styles
#0bject Syntax

The object syntax for : style is pretty straightforward - it looks almost like CSS, except it's a
JavaScript object. You can use either camelCase or kebab-case (use quotes with kebab-case) for
the CSS property names:

div :style="{ color: activeColor, fontSize: fontSize + 'px' div

data
return
activeColor: 'red'
fontSize: 30

}
It is often a good idea to bind to a style object directly so that the template is cleaner:
div :style="styleObject div

data
return
styleObiject:
color: 'red'
fontSize: '13px'

}
https://qgithere.com/doc/vue3.pdf Page 16 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-attrs.html
https://v3.vuejs.org/guide/class-and-style.html#binding-inline-styles
https://v3.vuejs.org/guide/class-and-style.html#object-syntax-2

Vue 3

Again, the object syntax is often used in conjunction with computed properties that return
objects.

#Array Syntax

The array syntax for : style allows you to apply multiple style objects to the same element:
div :style="[baseStyles, overridingStyles] div
#Auto-prefixing

When you use a CSS property that requires vendor prefixes in . style, for
example transform, Vue will automatically detect and add appropriate prefixes to the applied
styles.

#Multiple Values

You can provide an array of multiple (prefixed) values to a style property, for example:

div :style="{ display: ['-webkit-box', '-ms-flexbox', 'flex'] div
This will only render the last value in the array which the browser supports. In this example, it will
render display: T Llex for browsers that support the unprefixed version of flexbox.

Conditional Rendering
#v-if

The directive V—1T is used to conditionally render a block. The block will only be rendered if the
directive's expression returns a truthy value.

h1 v-if="awesome">Vue is awesome!</h1
-1

It is also possible to add an "else block" with v—else:
h1 v-if="awesome">Vue is awesome!</h1

h1 v-else>0Oh no @) </h1

#Conditional Groups with v—=if on <template>

Because V—1T is a directive, it has to be attached to a single element. But what if we want to

toggle more than one element? In this case we can use v-ifona <temp late> element,
which serves as an invisible wrapper. The final rendered result will not include

the <temp late> element.
template v-if="ok
h1>Title</h1
p>Paragraph 1</p
p>Paragraph 2</p
template

#v-else

You can use the V—€ LS e directive to indicate an "else block" for V—17:
div v-if="Math.random() > 0.5
Now you see me
div
div v-else
https://qgithere.com/doc/vue3.pdf Page 17 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/class-and-style.html#array-syntax-2
https://v3.vuejs.org/guide/class-and-style.html#auto-prefixing
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://v3.vuejs.org/guide/class-and-style.html#multiple-values
https://v3.vuejs.org/guide/conditional.html#v-if
https://v3.vuejs.org/guide/conditional.html#conditional-groups-with-v-if-on-template
https://v3.vuejs.org/guide/conditional.html#v-else

Vue 3

Now you don't
div

A v—e Lse element must immediately follow a V—1T ora v—else—1f element - otherwise it
will not be recognized.

#v-else-if

The V—e Lse—1T, as the name suggests, serves as an "else if block" for V—1T. It can also be
chained multiple times:
div v-if="type ===
A
div
div v-else-if="type ===
B
div
div v-else-if="type ===
C
div
div v-else
Not A/B/C
div

Similar to Vv—e Lse, a v—e Lse—1f element must immediately follow a V—1T ora v—else—
1T element.

#v-show

Another option for conditionally displaying an element is the V—Show directive. The usage is
largely the same:

h1 v-show="ok">Hello!</h1
.1

The difference is that an element with V—Show will always be rendered and remain in the
DOM; V—Show only toggles the d1Sp Lay CSS property of the element.

V—show doesn't support the <temp Late> element, nor does it work with v—e Lse.
#v-if VS v-show

v—1T is "real" conditional rendering because it ensures that event listeners and child
components inside the conditional block are properly destroyed and re-created during toggles.

v—1T is also lazy: if the condition is false on initial render, it will not do anything - the conditional
block won't be rendered until the condition becomes true for the first time.

In comparison, V—ShOW is much simpler - the element is always rendered regardless of initial
condition, with CSS-based toggling.

Generally speaking, V—1T has higher toggle costs while V—Sho0Ww has higher initial render costs.

So prefer V—Show if you need to toggle something very often, and prefer V—1T if the condition
is unlikely to change at runtime.

#v—-1f with v—Tfor
Note
https://qgithere.com/doc/vue3.pdf Page 18 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/conditional.html#v-else-if
https://v3.vuejs.org/guide/conditional.html#v-show
https://v3.vuejs.org/guide/conditional.html#v-if-vs-v-show
https://v3.vuejs.org/guide/conditional.html#v-if-with-v-for

Vue 3

Using V—1T and V=T 0 together is not recommended. See the style guide for further
information.

When V—1T and V=TOT are both used on the same element, V—1T will be evaluated first. See
the list rendering guide for details.

List Rendering
#Mapping an Array to Elements with v—for

We can use the V—T0I" directive to render a list of items based on an array. The V—
TOr directive requires a special syntax in the form of 1tem in items, where 1tems isthe
source data array and 1t em is an alias for the array element being iterated on:
ul id="array-rendering
li v-for="item in items
{{ item.message }}
li

Vue.createApp
data
return
items: [{ message: 'Foo' message: '‘Bar'

mount('#array-rendering'

Inside V—T 0" blocks we have full access to parent scope properties. V—T0 I also supports an
optional second argument for the index of the current item.

ul id="array-with-index
li v-for="(item, index) in items
{{ parentMessage }} - {{ index }} - {{ item.message }}
li

Vue.createApp
data
return
parentMessage: 'Parent’
items: || message: 'Foo' message: '‘Bar'

mount('#array-with-index'

You can also use O as the delimiter instead of 1N, so that it is closer to JavaScript's syntax for
iterators:

div v-for="item of items div

https://qgithere.com/doc/vue3.pdf Page 19 of 129

https://v3.vuejs.org/style-guide/#avoid-v-if-with-v-for-essential
https://v3.vuejs.org/guide/list#v-for-with-v-if
https://v3.vuejs.org/guide/list.html#mapping-an-array-to-elements-with-v-for
https://githere.com/doc/vue.pdf

Vue 3
#v—for with an Object

You can also use V—T0OT to iterate through the properties of an object.
ul id="v-for-object" class="demo
li v-for="value in myObject
{{ value }}
li

Vue.createApp
data
return
myObiject:
title: 'How to do lists in Vue'
author: 'Jane Doe'
publishedAt: '2016-04-10"

mount('#v-for-object’

You can also provide a second argument for the property's name (a.k.a. key):
li v-for="(value, name) in myObiject
{{ name }}: {{ value }}

And another for the index:
li v-for="(value, name, index) in myObject
{{ index }}. {{ name }}: {{ value }}

Note
When iterating over an object, the order is based on the enumeration order

of 0bject.keys (), which isn't guaranteed to be consistent across JavaScript engine
implementations.

#Maintaining State

When Vue is updating a list of elements rendered with V—T 0", by default it uses an "in-place
patch" strategy. If the order of the data items has changed, instead of moving the DOM elements
to match the order of the items, Vue will patch each element in-place and make sure it reflects
what should be rendered at that particular index.

This default mode is efficient, but only suitable when your list render output does not rely on child
component state or temporary DOM state (e.g. form input values).

To give Vue a hint so that it can track each node's identity, and thus reuse and reorder existing
elements, you need to provide a unique key attribute for each item:
div v-for="item in items" :key="item.id
<!-- content -->
div

https://qgithere.com/doc/vue3.pdf Page 20 of 129

https://v3.vuejs.org/guide/list.html#v-for-with-an-object
https://v3.vuejs.org/guide/list.html#maintaining-state
https://githere.com/doc/vue.pdf

Vue 3

It is recommended to provide a key attribute with V—T 0" whenever possible, unless the
iterated DOM content is simple, or you are intentionally relying on the default behavior for
performance gains.

Since it's a generic mechanism for Vue to identify nodes, the K€YV also has other uses that are
not specifically tied to V=101, as we will see later in the guide.
Note

Don't use non-primitive values like objects and arrays as V—T0O I keys. Use string or numeric
values instead.

For detailed usage of the key attribute, please see the key API documentation.
#Array Change Detection
#Mutation Methods

Vue wraps an observed array's mutation methods so they will also trigger view updates. The
wrapped methods are:

e push()

* pop()

e shift()

e unshift()
e splice()

e sort()

e reverse()

You can open the console and play with the previous examples' 1tems array by calling their
mutation methods. For example: examplel. items.push({ message:
1 1

Baz' }).
#Replacing an Array
Mutation methods, as the name suggests, mutate the original array they are called on. In
comparison, there are also non-mutating methods,

eg. filter(), concat() andslice(), which do not mutate the original array
but always return a new array. When working with non-mutating methods, you can replace the old
array with the new one:

examplel.items = example1.items filter(item => item.message match(/Foo/

You might think this will cause Vue to throw away the existing DOM and re-render the entire list -
luckily, that is not the case. Vue implements some smart heuristics to maximize DOM element
reuse, so replacing an array with another array containing overlapping objects is a very efficient
operation.

#Displaying Filtered/Sorted Results

Sometimes we want to display a filtered or sorted version of an array without actually mutating or
resetting the original data. In this case, you can create a computed property that returns the
filtered or sorted array.

For example:
li v-for="n in evenNumbers">{{ n }}</li

data
return
numbers: [1,2, 3, 4,5

|3
https://qgithere.com/doc/vue3.pdf Page 21 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/api/special-attributes.html#key
https://v3.vuejs.org/guide/list.html#array-change-detection
https://v3.vuejs.org/guide/list.html#mutation-methods
https://v3.vuejs.org/guide/list.html#replacing-an-array
https://v3.vuejs.org/guide/list.html#displaying-filtered-sorted-results

Vue 3

computed:
evenNumbers
return this.numbers filter(number => number % 2 ===

}

In situations where computed properties are not feasible (e.g. inside nested V—T0I" loops), you
can use a method:
ul v-for="numbers in sets
li v-for="n in even(numbers)">{{ n }}</li

data
return
sets: [[1,2,3,4,5],16,7,8,9,10

}

methods:
even(numbers
return numbers filter(number => number % 2 === 0

}
#v—-for with a Range

V—T0Or can also take an integer. In this case it will repeat the template that many times.
div id="range" class="demo
span v-for="nin 10">{{ n }} </span
div

#v-for on a <template>

Similar to template V=17, you can also use a <temp Late> tag with v—T 0T to render a
block of multiple elements. For example:

ul
template v-for="item in items
li{{ item.msg }}</li
li class="divider" role="presentation li
template

#v—for with v—1if
TIP

Note that it's not recommended to use V—1T and V—T0OT together. Refer to style guide for
details.

When they exist on the same node, V—1T has a higher priority than V—T 0. That means the V—
1T condition will not have access to variables from the scope of the v—fo
<!-- This will throw an error because property "todo" is not defined on instance. -->

li v-for="todo in todos" v-if="ltodo.isComplete
https://qgithere.com/doc/vue3.pdf Page 22 of 129

https://v3.vuejs.org/guide/list.html#v-for-with-a-range
https://v3.vuejs.org/guide/list.html#v-for-on-a-template
https://v3.vuejs.org/guide/list.html#v-for-with-v-if
https://v3.vuejs.org/style-guide/#avoid-v-if-with-v-for-essential
https://githere.com/doc/vue.pdf

Vue 3

{{ todo }}

This can be fixed by moving V=T 0T to a wrapping <temp late> tag:
template v-for="todo in todos
li v-if="ltodo.isComplete
{{ todo }}
li
template

#v—for with a Component

This section assumes knowledge of Components. Feel free to skip it and come back later.

You can directly use v—T0Or on a custom component, like any normal element:
my-component v-for="item in items" :key-"item.id my-component

However, this won't automatically pass any data to the component, because components have
isolated scopes of their own. In order to pass the iterated data into the component, we should
also use props:

my-component
v-for="(item, index) in items

ditem="item
:index="index
‘key="item.id

my-component

The reason for not automatically injecting 1t €m into the component is because that makes the
component tightly coupled to how V—T 0 works. Being explicit about where its data comes
from makes the component reusable in other situations.
Here's a complete example of a simple todo list:
div id="todo-list-example
form v-on:submit.prevent="addNewTodo
label for="new-todo">~Add a todo-/label
input
v-model="newTodoText
id="new-todo
placeholder="E.g. Feed the cat

button>Add</button
form
ul
todo-item
v-for="(todo, index) in todos
:key="todo.id
;title="todo.title
@remove="todos.splice(index, 1)
todo-item
ul
div

https://qgithere.com/doc/vue3.pdf Page 23 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/list.html#v-for-with-a-component
https://v3.vuejs.org/guide/component-basics.html

Vue 3

const app = Vue.createApp
data
return
newTodoText: "
todos:

id: 1
title: 'Do the dishes'

id: 2
title: 'Take out the trash'

id: 3
title: 'Mow the lawn'

nextTodold: 4

methods:
addNewTodo
this.todos.push
id: this.nextTodold++
title: this.newTodoText

this.newTodoText = "'

)

app.component('todo-item'
template:
li
title
<button @click="%emit('remove')">Remove</button>
li

props: |'title’
})

app.mount('#todo-list-example'

https://qgithere.com/doc/vue3.pdf Page 24 of 129

https://githere.com/doc/vue.pdf

Vue 3

Event Handling
#Listening to Events

We can use the V—0N directive, which we typically shorten to the @ symbol, to listen to DOM
events and run some JavaScript when they're triggered. The usage would be V—
on:click="methodName" or with the shortcut, @C Lick="methodName"
For example:
div id="basic-event
button @click="counter += 1">Add 1</button

p>The button above has been clicked {{ counter }} times.</p
div

Vue.createApp
data
return
counter: 1

mount('#basic-event'

#Method Event Handlers

The logic for many event handlers will be more complex though, so keeping your JavaScript in the

value of the V—0N attribute isn't feasible. That's why V—0N can also accept the name of a
method you'd like to call.

For example:
div id="event-with-method
<l--"greet is the name of a method defined below -->
button @click="greet">Greet</button
div

Vue.createApp
data
return
name: 'Vue.js'

methods:
greet(event
// "this’ inside methods points to the current active instance
alert('Hello ' + this.name + '!"
// "event is the native DOM event
if (event
alert(event.target tagName

https://qgithere.com/doc/vue3.pdf Page 25 of 129

https://v3.vuejs.org/guide/events.html#listening-to-events
https://v3.vuejs.org/guide/events.html#method-event-handlers
https://githere.com/doc/vue.pdf

Vue 3

mount('#event-with-method'

#Methods in Inline Handlers

Instead of binding directly to a method name, we can also use methods in an inline JavaScript
statement:

div id="inline-handler

button @click="say('hi')">Say hi</button
button @click="say('what')">Say what</button
div

Vue.createApp
methods:
say(message
alert(message

mount('#inline-handler’

Sometimes we also need to access the original DOM event in an inline statement handler. You can
pass it into a method using the special $event variable:
button @click="warn('Form cannot be submitted yet.', $event)
Submit
button

/...
methods:
warn(message, event
// now we have access to the native event
if (event
event.preventDefault

alert(message

#Multiple Event Handlers

You can have multiple methods in an event handler separated by a comma operator like this:
<!-- both one() and two() will execute on button click -->
button @click="one($event), two($event)
Submit
button

/...
methods:
onelevent

https://qgithere.com/doc/vue3.pdf Page 26 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/events.html#methods-in-inline-handlers
https://v3.vuejs.org/guide/events.html#multiple-event-handlers

Vue 3
// first handler logic...

twolevent
// second handler logic...

#Event Modifiers

It is a very common need to

callevent.preventDefault() orevent.stopPropagation() inside event
handlers. Although we can do this easily inside methods, it would be better if the methods can be
purely about data logic rather than having to deal with DOM event details.

To address this problem, Vue provides event modifiers for V—0N. Recall that modifiers are
directive postfixes denoted by a dot.

e .stop

e .prevent
e .capture
o .self

e .once

e .passive

<!-- the click event's propagation will be stopped -->
a @click.stop="doThis a

<!-- the submit event will no longer reload the page -->
form @submit.prevent="onSubmit form

<!-- modifiers can be chained -->
a @click.stop.prevent="doThat a

<!-- just the modifier -->
form @submit.prevent></form

<!-- use capture mode when adding the event listener -->

<!-- i.e. an event targeting an inner element is handled here before being handled by that element
-->

div @click.capture="doThis">...</div

<!-- only trigger handler if event.target is the element itself -->
<!--i.e. not from a child element -->
div @click.self="doThat">...</div

TIP
Order matters when using modifiers because the relevant code is generated in the same order.
Therefore using @C Lick.prevent.self will prevent all
clicks while @c Lick.self.prevent wil only prevent clicks on the element itself.
<!I-- the click event will be triggered at most once -->
a @click.once="doThis a

https://qgithere.com/doc/vue3.pdf Page 27 of 129

https://v3.vuejs.org/guide/events.html#event-modifiers
https://githere.com/doc/vue.pdf

Vue 3

Unlike the other modifiers, which are exclusive to native DOM events, the . 0N CE modifier can
also be used on component events. If you haven't read about components yet, don't worry about
this for now.
Vue also offers the . Pass 1Ve modifier, corresponding
to addEventListener's passive option.
<!-- the scroll event's default behavior (scrolling) will happen -->
<l-- immediately, instead of waiting for ‘onScroll' to complete -->
<!-- in case it contains “event.preventDefault() -->
div @scroll.passive="onScroll">...</div

The . Pass 1 Ve modifier is especially useful for improving performance on mobile devices.
TIP

Don'tuse . passive and . prevent together, because . prevent will be ignored and

your browser will probably show you a warning. Remember, . PaS5s 1Ve communicates to the
browser that you don't want to prevent the event's default behavior.

#Key Modifiers

When listening for keyboard events, we often need to check for specific keys. Vue allows adding
key modifiers for V—0N or (@ when listening for key events:
<!-- only call 'vm.submit()’ when the ‘key' is ‘Enter -->
input @keyup.enter="submit
You can directly use any valid key names exposed via KeyboardEvent. key as modifiers
by converting them to kebab-case.
input @keyup.page-down="onPageDown
In the above example, the handler will only be called if $event. key is equal
to 'PageDown"'.

#Key Aliases
Vue provides aliases for the most commonly used keys:
* .enter
e tab
e .delete (captures both "Delete" and "Backspace" keys)
e .esC
e .space
e .up
e .down
o left
e .right

#System Modifier Keys

You can use the following modifiers to trigger mouse or keyboard event listeners only when the
corresponding modifier key is pressed:

e .Ctrl

o alt

e _shift
e .meta

https://qgithere.com/doc/vue3.pdf Page 28 of 129

https://v3.vuejs.org/guide/component-custom-events.html
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener#Parameters
https://v3.vuejs.org/guide/events.html#key-modifiers
https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/key/Key_Values
https://v3.vuejs.org/guide/events.html#key-aliases
https://v3.vuejs.org/guide/events.html#system-modifier-keys
https://githere.com/doc/vue.pdf

Vue 3

Note

On Macintosh keyboards, meta is the command key (3). On Windows keyboards, meta is the
Windows key (B). On Sun Microsystems keyboards, meta is marked as a solid diamond (e). On
certain keyboards, specifically MIT and Lisp machine keyboards and successors, such as the
Knight keyboard, space-cadet keyboard, meta is labeled “META”. On Symbolics keyboards, meta
is labeled “META” or “Meta”.

For example:
<!-- Alt + Enter -->
input @keyup.alt.enter="clear

<!-- Ctrl + Click -->
div @click.ctrl-"doSomething">Do something</div

TIP

Note that modifier keys are different from regular keys and when used with K€y UD events, they
have to be pressed when the event is emitted. In other words, Keyup . ctr L will only trigger if
you release a key while holding down Ct r L. It won't trigger if you release the CtT I L key alone

#.exact Modifier

The . exact modifier allows control of the exact combination of system modifiers needed to
trigger an event.

<!I-- this will fire even if Alt or Shift is also pressed -->
button @click.ctrl="onClick">A</button

<!-- this will only fire when Ctrl and no other keys are pressed -->
button @click.ctrl.exact="onCtrIClick">A</button

<!-- this will only fire when no system modifiers are pressed -->
button @click.exact="onClick">A</button

#Mouse Button Modifiers

o left
° .right
e .middle

These modifiers restrict the handler to events triggered by a specific mouse button.
#Why Listeners in HTML?

You might be concerned that this whole event listening approach violates the good old rules
about "separation of concerns". Rest assured - since all Vue handler functions and expressions
are strictly bound to the ViewModel that's handling the current view, it won't cause any

maintenance difficulty. In fact, there are several benefits in using V—00N or @:

1. It's easier to locate the handler function implementations within your JS code by skimming
the HTML template.

2. Since you don't have to manually attach event listeners in JS, your ViewModel code can be
pure logic and DOM-free. This makes it easier to test.

3. When a ViewModel is destroyed, all event listeners are automatically removed. You don't
need to worry about cleaning it up yourself.

https://qgithere.com/doc/vue3.pdf Page 29 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/events.html#exact-modifier
https://v3.vuejs.org/guide/events.html#mouse-button-modifiers
https://v3.vuejs.org/guide/events.html#why-listeners-in-html

Vue 3

Form Input Bindings
#Basic Usage

You can use the V—mode L directive to create two-way data bindings on form input, textarea,
and select elements. It automatically picks the correct way to update the element based on the

input type. Although a bit magical, V—mode | is essentially syntax sugar for updating data on
user input events, plus special care for some edge cases.

Note

v—mode L will ignore the initial va Lue, checked or se Lected attributes found on any
form elements. It will always treat the current active instance data as the source of truth. You
should declare the initial value on the JavaScript side, inside the data option of your
component.

v—model internally uses different properties and emits different events for different input
elements:

* text and textarea elements use Va Lue property and input event;
* checkboxes and radiobuttons use Checked property and change event;
* select fields use Va lue as a prop and change as an event.

Note

For languages that require an IME (Chinese, Japanese, Korean etc.), you'll notice that V—
mode | doesn't get updated during IME composition. If you want to cater for these updates as
well, use input event instead.

#Text

input v-model="message" placeholder="edit me
p>Message is: {{ message }}</p

#Multiline text

span>Multiline message is:</span

p style="white-space: pre-line;">{{ message }}</p

br

textarea v-model="message" placeholder="add multiple lines textarea

Interpolation on textareas won't work. Use V—mode L instead.
<!-- bad -->
textarea>{{ text }}</textarea

<!-- good -->
textarea v-model="text textarea

#Checkbox

Single checkbox, boolean value:
input type="checkbox" id="checkbox" v-model="checked
label for="checkbox">{{ checked }}</label
Multiple checkboxes, bound to the same Array:
div id="v-model-multiple-checkboxes
input type="checkbox" id="jack" value="Jack" v-model="checkedNames
https://qgithere.com/doc/vue3.pdf Page 30 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/forms.html#basic-usage
https://en.wikipedia.org/wiki/Input_method
https://v3.vuejs.org/guide/forms.html#text
https://v3.vuejs.org/guide/forms.html#multiline-text
https://v3.vuejs.org/guide/forms.html#checkbox

Vue 3

label for="jack">Jack</label

input type="checkbox" id="john" value="John" v-model="checkedNames
label for="john">John</label

input type="checkbox" id="mike" value="Mike" v-model="checkedNames
label for="mike">Mike</label

br

span>Checked names: {{ checkedNames }}</span

div

Vue.createApp
data
return
checkedNames:

mount('#v-model-multiple-checkboxes'
#Radio

div id="v-model-radiobutton

input type="radio" id="one" value="0One" v-model="picked
label for="one">0One</label

br

input type="radio" id="two" value="Two" v-model="picked
label for="two">Two</label

br

span>Picked: {{ picked }}</span

div

Vue.createApp
data
return
picked: "

mount('#v-model-radiobutton'
#Select

Single select:
div id="v-model-select" class="demo
select v-model-"selected
option disabled value Please select one</option
option>A</option
option>B</option
option>C</option
select
span>Selected: {{ selected }}</span
div

https://qgithere.com/doc/vue3.pdf Page 31 of 129

https://v3.vuejs.org/guide/forms.html#radio
https://v3.vuejs.org/guide/forms.html#select
https://githere.com/doc/vue.pdf

Vue 3

Vue.createApp
data
return
selected: "

mount('#v-model-select'

Note

If the initial value of your V—mode | expression does not match any of the options,

the <se Lect> element will render in an "unselected" state. On iOS this will cause the user not
being able to select the first item because iOS does not fire a change event in this case. It is
therefore recommended to provide a disabled option with an empty value, as demonstrated in the

example above.
Multiple select (bound to Array):
select v-model="selected" multiple
option>A</option
option>B</option
option>C</option
select
br
span>Selected: {{ selected }}</span

Dynamic options rendered with V—T0O I
div id="v-model-select-dynamic" class="demo

select v-model="selected

option v-for="option in options" :value="option.value

{{ option.text }}
option
select

span>Selected: {{ selected }}</span

div

Vue.createApp
data
return

selected: 'A'

options:
text: 'One’, value: 'A’
text: "Two', value: 'B'
text: 'Three', value: 'C'

mount('#v-model-select-dynamic'

#Value Bindings

https://qithere.com/doc/vue3.pdf

Page 32 of 129

https://v3.vuejs.org/guide/forms.html#value-bindings
https://githere.com/doc/vue.pdf

Vue 3

For radio, checkbox and select options, the v—model binding values are usually static strings
(or booleans for checkbox):

<!-- "picked is a string "a" when checked -->
input type="radio" v-model="picked" value="a

<l-- "toggle’ is either true or false -->
input type="checkbox" v-model="toggle

<!-- ‘selected is a string "abc" when the first option is selected -->
select v-model="selected
option value="abc">ABC</option
select

But sometimes we may want to bind the value to a dynamic property on the current active

instance. We can use V—b1nd to achieve that. In addition, using V—b1nd allows us to bind the
input value to non-string values.

#Checkbox

input type="checkbox" v-model="toggle" true-value="yes" false-value="no
// when checked:

vm.toggle === "yes'
// when unchecked:
vm.toggle === 'no’
Tip

The true—va lue and Talse—value attributes don't affect the input's Va Lue attribute,
because browsers don't include unchecked boxes in form submissions. To guarantee that one of
two values is submitted in a form (e.g. "yes" or "no"), use radio inputs instead.

#Radio

input type="radio" v-model="pick" v-bind:value="a

// when checked:
vm.pick === vm.a

#Select Options

select v-model="selected
<!--inline object literal -->

option :value="{ number: 123 }">123</option
select

// when selected:
typeof vm.selected // => 'object'
vm.selected.number // => 123

#Modifiers
#.lazy

https://qgithere.com/doc/vue3.pdf Page 33 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/forms.html#checkbox-2
https://v3.vuejs.org/guide/forms.html#radio-2
https://v3.vuejs.org/guide/forms.html#select-options
https://v3.vuejs.org/guide/forms.html#modifiers
https://v3.vuejs.org/guide/forms.html#lazy

Vue 3

By default, V—mode L syncs the input with the data after each input event (with the exception
of IME composition as stated above). You can add the 1azy modifier to instead sync
after Change events:
<!-- synced after "change" instead of "input" -->
input v-model.lazy-"msg

#.number

If you want user input to be automatically typecast as a number, you can add
the numbe r modifier to your v—mode | managed inputs:
input v-model.number="age" type="number
This is often useful, because even with type="number", the value of HTML input elements

always returns a string. If the value cannot be parsed with pa rseFloat (), thenthe original
value is returned.

#.trim
If you want whitespace from user input to be trimmed automatically, you can add

the t r1m modifier to your V—mode L-managed inputs:
input v-model.trim="msg

#v—mode L with Components

If you're not yet familiar with Vue's components, you can skip this for now.

HTML's built-in input types won't always meet your needs. Fortunately, Vue components allow
you to build reusable inputs with completely customized behavior. These inputs even work

with V—mode L! To learn more, read about custom inputs in the Components guide.

Components Basics
#Base Example

Here's an example of a Vue component:
// Create a Vue application
const app = Vue.createApp

// Define a new global component called button-counter
app.component('button-counter’
data
return
count: 0

template:
<button @click="count++">
You clicked me {{ count }} times.
button>

)
INFO

https://qgithere.com/doc/vue3.pdf Page 34 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/forms.html#vmodel-ime-tip
https://v3.vuejs.org/guide/forms.html#number
https://v3.vuejs.org/guide/forms.html#trim
https://v3.vuejs.org/guide/forms.html#v-model-with-components
https://v3.vuejs.org/guide/component-basics.html#using-v-model-on-components
https://v3.vuejs.org/guide/component-basics.html#base-example

Vue 3

We're showing you a simple example here, but in a typical Vue application we use Single File
Components instead of a string template. You can find more information about them in this
section.

Components are reusable instances with a name: in this case, <button—counter=>. We can
use this component as a custom element inside a root instance:
div id="components-demo
button-counter></button-counter
div
app.mount(‘#components-demo’

Since components are reusable instances, they accept the same options as a root instance, such
as data, computed, watch, methods, and lifecycle hooks. The only exceptions are a
few root-specific options like € L.

#Reusing Components

Components can be reused as many times as you want:
div id="components-demo
button-counter></button-counter
button-counter></button-counter
button-counter></button-counter
div
Notice that when clicking on the buttons, each one maintains its own, separate COUNT. That's
because each time you use a component, a new instance of it is created.

#0rganizing Components

It's common for an app to be organized into a tree of nested components:

For example, you might have components for a header, sidebar, and content area, each typically
containing other components for navigation links, blog posts, etc.

To use these components in templates, they must be registered so that Vue knows about them.
There are two types of component registration: global and local. So far, we've only registered

components globally, using COmponent method of created app:
const app = Vue.createApp

app.component(‘'my-component-name'
// ... options ...

https://qgithere.com/doc/vue3.pdf Page 35 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/component-basics.html#reusing-components
https://v3.vuejs.org/guide/component-basics.html#organizing-components

Vue 3
)

Globally registered components can be used in the template of aPp instance created afterwards
- and even inside all subcomponents of that root instance's component tree.

That's all you need to know about registration for now, but once you've finished reading this page
and feel comfortable with its content, we recommend coming back later to read the full guide
on Component Registration.

#Passing Data to Child Components with Props

Earlier, we mentioned creating a component for blog posts. The problem is, that component won't
be useful unless you can pass data to it, such as the title and content of the specific post we want
to display. That's where props come in.

Props are custom attributes you can register on a component. When a value is passed to a prop
attribute, it becomes a property on that component instance. To pass a title to our blog post

component, we can include it in the list of props this component accepts, usinga PIrops option:
const app = Vue.createApp

app.component('blog-post’
props: |'title’

template: <h4-{] title h4>"
1

app.mount('#blog-post-demo’

A component can have as many props as you'd like and by default, any value can be passed to
any prop. In the template above, you'll see that we can access this value on the component

instance, just like with data.
Once a prop is registered, you can pass data to it as a custom attribute, like this:
div id="blog-post-demo" class="demo
blog-post title="My journey with Vue blog-post
blog-post title="Blogging with Vue blog-post
blog-post title="Why Vue is so fun blog-post
div

In a typical app, however, you'll likely have an array of posts in data:
const App =
data
return
posts:
id: 1, title: '"My journey with Vue'
id: 2, title: 'Blogging with Vue'
id: 3, title: 'Why Vue is so fun'

const app = Vue.createApp(App
https://qgithere.com/doc/vue3.pdf Page 36 of 129

https://v3.vuejs.org/guide/component-registration.html
https://v3.vuejs.org/guide/component-basics.html#passing-data-to-child-components-with-props
https://githere.com/doc/vue.pdf

Vue 3

app.component('blog-post’
props: |'title’

template: <h4-{] title h4="
1

app.-mount('#blog-posts-demo’
Then want to render a component for each one:
div id="blog-posts-demo
blog-post
v-for="post in posts
:key="post.id
‘title="post.title
blog-post
div
Above, you'll see that we can use V—D1Nnd to dynamically pass props. This is especially useful
when you don't know the exact content you're going to render ahead of time.

That's all you need to know about props for now, but once you've finished reading this page and
feel comfortable with its content, we recommend coming back later to read the full guide
on Props.

#Listening to Child Components Events

As we develop our <blog—post> component, some features may require communicating
back up to the parent. For example, we may decide to include an accessibility feature to enlarge
the text of blog posts, while leaving the rest of the page its default size.
In the parent, we can support this feature by addinga pOSst FontSize data property:
const App =
data
return
posts:
/e

postFontSize: 1

}
Which can be used in the template to control the font size of all blog posts:
div id="blog-posts-events-demo
div v-bind:style="{ fontSize: postFontSize + 'em’
blog-post v-for="post in posts" :key="post.id" :title="post.title blog-post
div
div
Now let's add a button to enlarge the text right before the content of every post:
app.component('blog-post’
props: | 'title'
template:
div class="blog-post
h4=-{{ title h4
button

https://qgithere.com/doc/vue3.pdf Page 37 of 129

https://v3.vuejs.org/guide/component-props.html
https://v3.vuejs.org/guide/component-basics.html#listening-to-child-components-events
https://githere.com/doc/vue.pdf

Vue 3

Enlarge text
button
div

1
The problem is, this button doesn't do anything:

button
Enlarge text
button

When we click on the button, we need to communicate to the parent that it should enlarge the
text of all posts. Fortunately, component instances provide a custom events system to solve this

problem. The parent can choose to listen to any event on the child component instance with V—
0N or @, just as we would with a native DOM event:

blog-post ... @enlarge-text-"postFontSize += 0.1 blog-post
Then the child component can emit an event on itself by calling the built-in $emit method,
passing the name of the event:

button @click="$emit('enlarge-text’)

Enlarge text

button

Thanks to the @en large—text="postFontSize += 0. 1" listener, the parent will
receive the event and update postFontSize value.

We can list emitted events in the component's em1ts option.
app.component('blog-post’

props: ['title’

emits: ['‘enlarge-text’

)

This will allow you to check all the events component emits and optionally validate them
#Emitting a Value With an Event

It's sometimes useful to emit a specific value with an event. For example, we may want
the <b 1og—post> component to be in charge of how much to enlarge the text by. In those
cases, we can use $€mit's 2nd parameter to provide this value:
button @click-"$emit('enlarge-text’, 0.1)
Enlarge text
button
Then when we listen to the event in the parent, we can access the emitted event's value
with $event:
blog-post ... @enlarge-text-"postFontSize += $event blog-post
Or, if the event handler is a method:
blog-post ... @enlarge-text-"onEnlargeText blog-post
Then the value will be passed as the first parameter of that method:
methods:
onEnlargeText(enlargeAmount
this.postFontSize += enlargeAmount

}
#Using v—mode L on Components

https://qgithere.com/doc/vue3.pdf Page 38 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/api/instance-methods.html#emit
https://v3.vuejs.org/guide/component-custom-events.html#validate-emitted-events
https://v3.vuejs.org/guide/component-basics.html#emitting-a-value-with-an-event
https://v3.vuejs.org/guide/component-basics.html#using-v-model-on-components

Vue 3

Custom events can also be used to create custom inputs that work with v—mode L. Remember
that:

input v-model="searchText
does the same thing as:
input :value="searchText' @input-"searchText = $event.target.value

When used on a component, v—mode | instead does this:
custom-input
:model-value="searchText
@update:model-value-"searchText = $event
custom-input
WARNING
Please note we used Mode L—va Lue with kebab-case here because we are working with in-

DOM template. You can find a detailed explanation on kebab-cased vs camelCased attributes in
the DOM Template Parsing Caveats section

For this to actually work though, the <in put> inside the component must:
* Bind the va Lue attribute to amode LVa Lue prop

* On input, emitan update:mode lVa lue event with the new value

Here's that in action:
app.component(‘custom-input'

props: ['modelValue'

template:

input
modelValue
$emit('update:modelValue', $event.target.value

)

Now V—mode L should work perfectly with this component:
custom-input v-model="searchText custom-input

Another way of creating the v—model capability within a custom component is to use the ability
of Computed properties' to define a getter and setter.

In the following example, we refactor the Custom—1in put component using a computed
property.
Keep in mind, the &t method should return the mode LVa Lue property, or whichever
property is being using for binding, and the S€t method should fire off the
corresponding $emit for that property.
app.component(‘custom-input’

props: |'modelValue'

template:

input v-model="value

computed:
value:
get
return this.modelValue

https://qgithere.com/doc/vue3.pdf Page 39 of 129

https://v3.vuejs.org/guide/component-basics.html#dom-template-parsing-caveats
https://githere.com/doc/vue.pdf

Vue 3

set(value
this.$emit('update:modelValue', value

That's all you need to know about custom component events for now, but once you've finished
reading this page and feel comfortable with its content, we recommend coming back later to read
the full guide on Custom Events.

#Content Distribution with Slots

Just like with HTML elements, it's often useful to be able to pass content to a component, like
this:
alert-box
Something bad happened.
alert-box

Fortunately, this task is made very simple by Vue's custom <S LOT> element:
app.component(‘alert-box'
template:
div class="demo-alert-box
strong>Error!</strong
slot></slot
div

)

As you'll see above, we just add the slot where we want it to go -- and that's it. We're done!

That's all you need to know about slots for now, but once you've finished reading this page and
feel comfortable with its content, we recommend coming back later to read the full guide on Slots.

#Dynamic Components

Sometimes, it's useful to dynamically switch between components, like in a tabbed interface:

The above is made possible by Vue's <Component> element with the 15 special attribute:
<!-- Component changes when currentTabComponent changes -->
component :is="currentTabComponent component

In the example above, currentTabComponent can contain either:
« the name of a registered component, or
« acomponent's options object

See this sandbox to experiment with the full code, or this version for an example binding to a
component's options object, instead of its registered name.

Keep in mind that this attribute can be used with regular HTML elements, however they will be
treated as components, which means all attributes will be bound as DOM attributes. For some

properties such as Va Lue to work as you would expect, you will need to bind them using
the . Prop modifier.

That's all you need to know about dynamic components for now, but once you've finished reading
this page and feel comfortable with its content, we recommend coming back later to read the full
guide on Dynamic & Async Components.

#DOM Template Parsing Caveats

https://qgithere.com/doc/vue3.pdf Page 40 of 129

https://v3.vuejs.org/guide/component-custom-events.html
https://v3.vuejs.org/guide/component-basics.html#content-distribution-with-slots
https://v3.vuejs.org/guide/component-slots.html
https://v3.vuejs.org/guide/component-basics.html#dynamic-components
https://codepen.io/team/Vue/pen/oNXaoKy
https://codepen.io/team/Vue/pen/oNXapXM
https://v3.vuejs.org/api/directives.html#v-bind
https://v3.vuejs.org/guide/component-dynamic-async.html
https://v3.vuejs.org/guide/component-basics.html#dom-template-parsing-caveats
https://githere.com/doc/vue.pdf

Vue 3

Some HTML elements, such as <U >, <0 >, <table> and <se lect> have restrictions on
what elements can appear inside them, and some elements such as , <tr>,
and <opt 10N> can only appear inside certain other elements.

This will lead to issues when using components with elements that have such restrictions. For
example:

table
blog-post-row></blog-post-row
table

The custom component <blog—post— I"fOw> will be hoisted out as invalid content, causing

errors in the eventual rendered output. Fortunately, we can use V—15 special directive as a
workaround:

table
tr v-is="'blog-post-row tr
table
WARNING

V—15 value should be a JavaScript string literal:
<!-- Incorrect, nothing will be rendered -->
tr v-is="blog-post-row tr

<!-- Correct -->
tr v-is="'blog-post-row tr

Also, HTML attribute names are case-insensitive, so browsers will interpret any uppercase
characters as lowercase. That means when you’re using in-DOM templates, camelCased prop
names and event handler parameters need to use their kebab-cased (hyphen-delimited)
equivalents:

// camelCase in JavaScript

app.component('blog-post’
props: |'postTitle'
template:

h3>{{ postTitle h3

)
<!-- kebab-case in HTML -->

blog-post post-title="hello! blog-post
It should be noted that these limitations do not apply if you are using string templates from one of
the following sources:
* String templates (e.g. template: '...")

* Single-file (. VUE) components
e <script type="text/x-template">

That's all you need to know about DOM template parsing caveats for now - and actually, the end
of Vue's Essentials. Congratulations! There's still more to learn, but first, we recommend taking a
break to play with Vue yourself and build something fun.

Once you feel comfortable with the knowledge you've just digested, we recommend coming back
to read the full guide on Dynamic & Async Components, as well as the other pages in the
Components In-Depth section of the sidebar.

https://qgithere.com/doc/vue3.pdf Page 41 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/component-dynamic-async.html

Vue 3

Component Registration

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

#Component Names

When registering a component, it will always be given a name. For example, in the global
registration we've seen so far:

const app = Vue.createApp(!...

app.component(‘my-component-name'
Yy
Y
The component's name is the first argument of app . component. In the example above, the
component's name is "my-component-name”.

The name you give a component may depend on where you intend to use it. When using a
component directly in the DOM (as opposed to in a string template or single-file component), we
strongly recommend following the W3C rules for custom tag names:

1. All lowercase

2. Contains a hyphen (i.e., has multiple words connected with the hyphen symbol)
By doing so, this will help you avoid conflicts with current and future HTML elements.
You can see other recommendations for component names in the Style Guide.

#Name Casing

When defining components in a string template or a single-file component, you have two options
when defining component names:

#With kebab-case

app.component('my-component-name'
VA
1
When defining a component with kebab-case, you must also use kebab-case when referencing its
custom element, such as in <my—component—name>.
#With PascalCase
app.component('MyComponentName'
Vi
Y
When defining a component with PascalCase, you can use either case when referencing its
custom element. That means both <my—component—

Name> and <MyComponentName> are acceptable. Note, however, that only kebab-case
names are valid directly in the DOM (i.e. non-string templates).

#Global Registration

So far, we've only created components using app . component:
Vue.createApp({...}).component('my-component-name’
// ... options ...

)

These components are globally registered for the application. That means they can be used in the
template of any component instance within this application:

const app = Vue.createApp

https://qgithere.com/doc/vue3.pdf Page 42 of 129

https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-registration.html#component-names
https://v3.vuejs.org/guide/single-file-component.html
https://html.spec.whatwg.org/multipage/custom-elements.html#valid-custom-element-name
https://v3.vuejs.org/style-guide/#base-component-names-strongly-recommended
https://v3.vuejs.org/guide/component-registration.html#name-casing
https://v3.vuejs.org/guide/component-registration.html#with-kebab-case
https://v3.vuejs.org/guide/component-registration.html#with-pascalcase
https://v3.vuejs.org/guide/component-registration.html#global-registration
https://githere.com/doc/vue.pdf

Vue 3

app.component(‘component-a'
Vil

)

app.component(‘component-b'
[

)

app.component(‘component-c'
Vil

)

app.mount('#app'

div id="app
component-a></component-a
component-b></component-b
component-c></component-c
div

This even applies to all subcomponents, meaning all three of these components will also be
available inside each other.

#l ocal Registration

Global registration often isn't ideal. For example, if you're using a build system like Webpack,
globally registering all components means that even if you stop using a component, it could still
be included in your final build. This unnecessarily increases the amount of JavaScript your users
have to download.

In these cases, you can define your components as plain JavaScript objects:
const ComponentA =
Yy
}
const ComponentB =
VA
}
const ComponentC =
Yy
}

Then define the components you'd like to use ina components option:
const app = Vue.createApp
components:
‘component-a‘: ComponentA
‘component-b': ComponentB

https://qgithere.com/doc/vue3.pdf Page 43 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-registration.html#local-registration

Vue 3

For each property in the COMponNents object, the key will be the name of the custom element,
while the value will contain the options object for the component.

Note that locally registered components are not also available in subcomponents. For example, if
you wanted ComponentA to be available in ComponentB, you'd have to use:
const ComponentA =
Yy
}

const ComponentB =
components:
‘component-a': ComponentA

/..
}

Or if you're using ES2015 modules, such as through Babel and Webpack, that might look more
like:

import ComponentA from './ComponentA.vue'

export default
components:
ComponentA

/..
}

Note that in ES2015+, placing a variable name like ComponentA inside an object is shorthand
for ComponentA: ComponentA, meaning the name of the variable is both:

+ the custom element name to use in the template, and

« the name of the variable containing the component options

#Module Systems

If you're not using a module system with impo rt/requ 1re, you can probably skip this
section for now. If you are, we have some special instructions and tips just for you.

#Local Registration in a Module System

If you're still here, then it's likely you're using a module system, such as with Babel and Webpack.

In these cases, we recommend creating a COmMpPoONents directory, with each component in its
own file.

Then you'll need to import each component you'd like to use, before you locally register it. For
example, in a hypothetical ComponentB. js or ComponentB. vue file:

import ComponentA from './ComponentA'

import ComponentC from './ComponentC'

export default

components:
ComponentA
ComponentC

https://qgithere.com/doc/vue3.pdf Page 44 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-registration.html#module-systems
https://v3.vuejs.org/guide/component-registration.html#local-registration-in-a-module-system

Vue 3

/...
}
Now both ComponentA and ComponentC can be used inside ComponentB's template.

Props

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

#Prop Types

So far, we've only seen props listed as an array of strings:
props: ['title', 'likes', 'isPublished', ‘commentlds’, 'author
Usually though, you'll want every prop to be a specific type of value. In these cases, you can list
props as an object, where the properties' names and values contain the prop names and types,
respectively:
props:

title: String

likes: Number.

isPublished: Boolean

commentlds: Array

author: Object

callback: Function

contactsPromise: Promise // or any other constructor

}

This not only documents your component, but will also warn users in the browser's JavaScript
console if they pass the wrong type. You'll learn much more about type checks and other prop
validations further down this page.

#Passing Static or Dynamic Props
So far, you've seen props passed a static value, like in:
blog-post title="My journey with Vue blog-post

You've also seen props assigned dynamically with V=D 1nd or its shortcut, the : character, such
asin:
<!-- Dynamically assign the value of a variable -->

blog-post :title="post.title blog-post

<!-- Dynamically assign the value of a complex expression -->
blog-post :title="post.title + ' by ' + post.author.name blog-post

In the two examples above, we happen to pass string values, but any type of value can actually
be passed to a prop.

#Passing a Number

<!-- Even though 42’ is static, we need v-bind to tell Vue that -->
<!-- this is a JavaScript expression rather than a string. ->

https://qgithere.com/doc/vue3.pdf Page 45 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-props.html#prop-types
https://v3.vuejs.org/guide/component-props.html#prop-validation
https://v3.vuejs.org/guide/component-props.html#prop-validation
https://v3.vuejs.org/guide/component-props.html#passing-static-or-dynamic-props
https://v3.vuejs.org/guide/component-props.html#passing-a-number

Vue 3
blog-post :likes="42 blog-post

<!-- Dynamically assign to the value of a variable. -->
blog-post :likes="post.likes blog-post

#Passing a Boolean

<!-- Including the prop with no value will imply “true’. -->
blog-post is-published></blog-post

<!-- Even though false’ is static, we need v-bind to tell Vue that -->
<!-- this is a JavaScript expression rather than a string. -->
blog-post :is-published="false blog-post

<!-- Dynamically assign to the value of a variable. -->
blog-post :is-published="post.isPublished blog-post

#Passing an Array

<!-- Even though the array is static, we need v-bind to tell Vue that -->
<!-- this is a JavaScript expression rather than a string. -->
blog-post :comment-ids="[234, 266, 273] blog-post

<!-- Dynamically assign to the value of a variable. -->
blog-post :comment-ids="post.commentlds blog-post
#Passing an Object
<!-- Even though the object is static, we need v-bind to tell Vue that -->
<!-- this is a JavaScript expression rather than a string. -->
blog-post
:author="{
name: 'Veronica',
company: 'Veridian Dynamics

}
blog-post

<!-- Dynamically assign to the value of a variable. -->
blog-post :author="post.author blog-post

#Passing the Properties of an Object

If you want to pass all the properties of an object as props, you can use V—b1nd without an
argument (V—b1nd instead of : prop—name). For example, given a POST object:
post:
id: 1
title: ‘My Journey with Vue'
}

The following template:
blog-post v-bind="post blog-post

https://qgithere.com/doc/vue3.pdf Page 46 of 129

https://v3.vuejs.org/guide/component-props.html#passing-a-boolean
https://v3.vuejs.org/guide/component-props.html#passing-an-array
https://v3.vuejs.org/guide/component-props.html#passing-an-object
https://v3.vuejs.org/guide/component-props.html#passing-the-properties-of-an-object
https://githere.com/doc/vue.pdf

Vue 3

Will be equivalent to:
blog-post v-bind:id="post.id" v-bind:title="post.title blog-post

#0ne-Way Data Flow

All props form a one-way-down binding between the child property and the parent one: when the
parent property updates, it will flow down to the child, but not the other way around. This prevents
child components from accidentally mutating the parent's state, which can make your app's data
flow harder to understand.

In addition, every time the parent component is updated, all props in the child component will be
refreshed with the latest value. This means you should not attempt to mutate a prop inside a child
component. If you do, Vue will warn you in the console.

There are usually two cases where it's tempting to mutate a prop:

1. The prop is used to pass in an initial value; the child component wants to use it as a local
data property afterwards. In this case, it's best to define a local data property that uses the
prop as its initial value:

props: ['initialCounter’
data
return
counter: this.initialCounter

}

2. The prop is passed in as a raw value that needs to be transformed. In this case, it's best to
define a computed property using the prop's value:

props: |'size'
computed:
normalizedSize: function
return this.size.trim().toLowerCase

}
Note

Note that objects and arrays in JavaScript are passed by reference, so if the prop is an array or
object, mutating the object or array itself inside the child component will affect parent state.

#Prop Validation

Components can specify requirements for their props, such as the types you've already seen. If a
requirement isn't met, Vue will warn you in the browser's JavaScript console. This is especially
useful when developing a component that's intended to be used by others.

To specify prop validations, you can provide an object with validation requirements to the value
of Props, instead of an array of strings. For example:
app.component('my-component'
props:
// Basic type check (null and ‘undefined’ values will pass any type validation)
propA: Number,
// Multiple possible types
propB: [String, Number
// Required string
propC:
type: String
required: true

https://qgithere.com/doc/vue3.pdf Page 47 of 129

https://v3.vuejs.org/guide/component-props.html#one-way-data-flow
https://v3.vuejs.org/guide/component-props.html#prop-validation
https://githere.com/doc/vue.pdf

Vue 3

// Number with a default value
propD:

type: Number.

default: 100

// Object with a default value
propE:
type: Object
// Object or array defaults must be returned from
// a factory function
default: function
return { message: 'hello’

// Custom validator function
propF:
validator: function(value
// The value must match one of these strings
return 'success', 'warning', 'danger'|.indexOf(value) == -1

// Function with a default value
propG:
type: Function

// Unlike object or array default, this is not a factory function - this is a function to serve as a
default value

default: function
return 'Default function'

)

When prop validation fails, Vue will produce a console warning (if using the development build).
Note

Note that props are validated before a component instance is created, so instance properties
(e.g. data, computed, etc) will not be available

inside default or validator functions.

#Type Checks

The type can be one of the following native constructors:

+ String

* Number
+ Boolean
« Array

« Object

« Date

« Function
« Symbol

https://qgithere.com/doc/vue3.pdf Page 48 of 129

https://v3.vuejs.org/guide/component-props.html#type-checks
https://githere.com/doc/vue.pdf

Vue 3

In addition, Ty Pe can also be a custom constructor function and the assertion will be made with
an 1nstanceof check. For example, given the following constructor function exists:
function Person(firstName, lastName

this firstName = firstName

this.lastName = lastName
}
You could use:
app.component('blog-post'

props:

author: Person

1
to validate that the value of the autho I prop was created with new Person.

#Prop Casing (camelCase vs kebab-case)

HTML attribute names are case-insensitive, so browsers will interpret any uppercase characters
as lowercase. That means when you're using in-DOM templates, camelCased prop names need
to use their kebab-cased (hyphen-delimited) equivalents:

const app = Vue.createApp

app.component('blog-post'
// camelCase in JavaScript
props: |'postTitle’
template: '<h3>{{ postTitle h3>'
)
<!-- kebab-case in HTML -->
blog-post post-title="hello! blog-post
Again, if you're using string templates, this limitation does not apply.

Non-Prop Attributes

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

A component non-prop attribute is an attribute or event listener that is passed to a component,
but does not have a corresponding property defined in props or emits. Common examples of this

include c Lass, sty le, and 1d attributes. You can access those attributes
via $attrs property.

#Attribute Inheritance

When a component returns a single root node, non-prop attributes will automatically be added to
the root node's attributes. For example, in the instance of a date-picker component:

app.component(‘'date-picker
template:
div class="date-picker
input type="datetime
div

https://qgithere.com/doc/vue3.pdf Page 49 of 129

https://v3.vuejs.org/guide/component-props.html#prop-casing-camelcase-vs-kebab-case
https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-props
https://v3.vuejs.org/guide/component-custom-events.html#defining-custom-events
https://v3.vuejs.org/guide/component-attrs.html#attribute-inheritance
https://githere.com/doc/vue.pdf

Vue 3

In the event we need to define the status of the date-picker component via a data—
status property, it will be applied to the root node (i.e., d1V.date—picker).
<!-- Date-picker component with a non-prop attribute -->

date-picker data-status="activated date-picker

<!-- Rendered date-picker component -->
div class="date-picker" data-status="activated
input type="datetime
div
Same rule applies to the event listeners:
date-picker @change="submitChange date-picker

app.component(‘date-picker
created
console.log(this $attrs) // { onChange: () => {} }

)

This might be helpful when we have an HTML element with Change event as a root element
of date—picker.
app.component('date-picker
template:
select
option value="1">Yesterday-/option
option value="2">Today</option
option value="3">Tomorrow</option
select

)

In this case, Change event listener is passed from the parent component to the child and it will
be triggered on native <select>cha Nge event. We won't need to emit an event from
the date—picker explicitly:

div id="date-picker" class="demo

date-picker @change-"showChange date-picker

div
const app = Vue.createApp

methods:

showChange(event
console. loglevent.target.value) // will log a value of the selected option

#Disabling Attribute Inheritance

https://qgithere.com/doc/vue3.pdf Page 50 of 129

https://v3.vuejs.org/guide/component-attrs.html#disabling-attribute-inheritance
https://githere.com/doc/vue.pdf

Vue 3

If you do not want a component to automatically inherit attributes, you can

set inheritAttrs: false inthe component's options.

The common scenario for disabling an attribute inheritance is when attributes need to be applied
to other elements besides the root node.

By setting the 1nheritAttrs optionto false, you can control to apply to other elements
attributes to use the component's $att s property, which includes all attributes not included to
component Props and emits properties (e.g., C Lass, sty le, v—on listeners, etc.).

Using our date-picker component example from the previous section, in the event we need to
apply all non-prop attributes to the input element rather than the root d 1V element, this can
be accomplished by using the V—b1nd shortcut.

app.component('date-picker

inheritAttrs: false

template:
div class="date-picker
input type-"datetime" v-bind-"$attrs
div

With this new configuration, our data—status attribute will be applied to
our 1nput element!
<!-- Date-picker component with a non-prop attribute -->

date-picker data-status="activated date-picker

<!-- Rendered date-picker component -->
div class="date-picker
input type="datetime" data-status="activated
div
#Attribute Inheritance on Multiple Root Nodes

Unlike single root node components, components with multiple root nodes do not have an

automatic attribute fallthrough behavior. If $att s are not bound explicitly, a runtime warning
will be issued.

custom-layout id="custom-layout" @click="changeValue custom-layout

// This will raise a warning
app.component('custom-layout’
template:
<header>...</header>
<main>...</main>
<footer>...</footer>

)

// No warnings, $attrs are passed to <main> element
app.component(‘custom-layout’

https://qgithere.com/doc/vue3.pdf Page 51 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-attrs.html#attribute-inheritance
https://v3.vuejs.org/guide/component-attrs.html#attribute-inheritance-on-multiple-root-nodes

Vue 3

template:
header-...</header
main v-bind-"$attrs" -...</main
footer=...</footer

Custom Events

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

#Event Names

Unlike components and props, event names don't provide any automatic case transformation.
Instead, the name of an emitted event must exactly match the name used to listen to that event.

this.$emit('my-event'
my-component @my-event-"doSomething my-component
If we're emitting a camelCased event name:
this.$emit('myEvent'
Listening to the kebab-cased version will have no effect:
<!-- Won't work -->
my-component @my-event="doSomething my-component
Since event names will never be used as variable or property names in JavaScript, there is no

reason to use camelCase or PascalCase. Additionally, V—0N event listeners inside DOM
templates will be automatically transformed to lowercase (due to HTML's case-insensitivity),

so @myEvent would become @myevent -- making myEvent impossible to listen to.
For these reasons, we recommend you always use kebab-case for event names.

#Defining Custom Events

Watch a free video about Defining Custom Events on Vue School

Emitted events can be defined on the component via the em1its option.
app.component(‘custom-form'

emits: ['in-focus', 'submit'
Y
When a native event (e.g., C L1CK) is defined in the em1tS option, the component event will be
used instead of a native event listener.
TIP

It is recommended to define all emitted events in order to better document how a component
should work.

#Validate Emitted Events
Similar to prop type validation, an emitted event can be validated if it is defined with the Object
syntax instead of the Array syntax.
To add validation, the event is assigned a function that receives the arguments passed to
the $em 1t call and returns a boolean to indicate whether the event is valid or not.
app.component(‘custom-form'
emits:
// No validation
click: null

https://qgithere.com/doc/vue3.pdf Page 52 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-custom-events.html#event-names
https://v3.vuejs.org/guide/component-custom-events.html#defining-custom-events
https://vueschool.io/lessons/defining-custom-events-emits?friend=vuejs
https://v3.vuejs.org/guide/component-custom-events.html#validate-emitted-events

Vue 3

// Validate submit event
submit: ({ email, password }) =>
if (email && password
return true
else
console .warn('Invalid submit event payload!'
return false

methods:
submitForm
this.$emit('submit', | email, password

#v—-model arguments

By default, v—mode L on a component uses mode LVa Lue as the prop
and update :mode LValue as the event. We can modify these names passing an argument
to v—mode L:

my-component v-model:title="bookTitle my-component

In this case, child component will expect a T 1t Le prop and emits update: title eventto
sync:
const app = Vue.createApp

app.component('my-component'

props:
title: String
template:
input
type="text
:value="title"

$emit'update:title', $event target.value

)

my-component v-model:title="bookTitle my-component

#Multiple v—-model bindings

By leveraging the ability to target a particular prop and event as we learned before with V—

model arguments, we can now create multiple v-model bindings on a single component
instance.

Each v-model will sync to a different prop, without the need for extra options in the component:

https://qgithere.com/doc/vue3.pdf Page 53 of 129

https://v3.vuejs.org/guide/component-custom-events.html#v-model-arguments
https://v3.vuejs.org/guide/component-custom-events.html#multiple-v-model-bindings
https://v3.vuejs.org/guide/component-custom-events.html#v-model-arguments
https://v3.vuejs.org/guide/component-custom-events.html#v-model-arguments
https://githere.com/doc/vue.pdf

Vue 3

user-name

v-model:first-name="firstName

v-model:last-name-"lastName
user-name

const app = Vue.createApp

app.component(‘user-name'

props:
firstName: String
lastName: String

template:
input
type="text
firstName
$emit('update:firstName', $event target.value

input
type="text
:value="lastName"
$emit('update:lastName', $event target.value

)

#Handling v—mode 1 modifiers

When we were learning about form input bindings, we saw that V—mode | has built-in

modifiers - » Trim, .number and . Lazy. In some cases, however, you might also want to
add your own custom modifiers.

Let's create an example custom modifier, Capitalize, that capitalizes the first letter of the
string provided by the V—mode L binding.

Modifiers added to a component v—mode L will be provided to the component via
the mode LModifiers prop. In the below example, we have created a component that
contains amode (Modifiers prop that defaults to an empty object.

Notice that when the component's C reated lifecycle hook triggers,
the mode IModifiers prop contains capitalize andits valueis t rue - due to it being
set on the v—mode | binding v—-mode L. capitalize="bar".

my-component v-model.capitalize="bar my-component

app.component(‘my-component'
props:
modelValue: String
modelModifiers:
default: () =>

https://qgithere.com/doc/vue3.pdf Page 54 of 129

https://v3.vuejs.org/guide/component-custom-events.html#handling-v-model-modifiers
https://v3.vuejs.org/guide/forms.html#modifiers
https://v3.vuejs.org/guide/forms.html#modifiers
https://githere.com/doc/vue.pdf

Vue 3

template:
input type="text
modelValue
$emit('update:modelValue', $event target value

created
console.log(this.modelModifiers) // { capitalize: true }

Now that we have our prop set up, we can check the mode LModifiers object keys and
write a handler to change the emitted value. In the code below we will capitalize the string

whenever the <1nput /> element fires an 1Nput event.
div id="app
my-component v-model.capitalize="myText my-component
{{ myText }}
div

const app = Vue.createApp
data
return
myText: "

)

app.component('my-component'
props:
modelValue: String
modelModifiers:
default: () =>

methods:
emitValue(e
let value = e.target.value
if (this.modelModifiers.capitalize
value = value.charAt(0).toUpperCase() + value.slice(1

this.$emit('update:modelValue', value

template: <input
type="text
modelValue
emitValue

https://qgithere.com/doc/vue3.pdf Page 55 of 129

https://githere.com/doc/vue.pdf

Vue 3
)

app-mount(‘#app’

For v—mode L bindings with arguments, the generated prop name will be @ rg +
"Modifiers":
my-component v-model:foo.capitalize="bar my-component

app.component('my-component'
props: ['foo', 'fooModifiers'
template:
input type="text
:value="foo"
$emit'update:foo', $event target.value

created
console.log(this.fooModifiers) // { capitalize: true }

Slots

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

#Slot Content

Vue implements a content distribution API inspired by the Web Components spec draft, using
the <S LOT> element to serve as distribution outlets for content.
This allows you to compose components like this:
todo-button
Add todo
todo-button

Then in the template for <todo—-button=>, you might have:
<!-- todo-button component template -->
button class="btn-primary
slot></slot
button

When the component renders, <S Lot></5s Lot> will be replaced by "Add Todo".
<!-- rendered HTML -->
button class="btn-primary
Add todo
button
Strings are just the beginning though! Slots can also contain any template code, including HTML:
todo-button
<!-- Add a Font Awesome icon -->

https://qgithere.com/doc/vue3.pdf Page 56 of 129

https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-slots.html#slot-content
https://github.com/w3c/webcomponents/blob/gh-pages/proposals/Slots-Proposal.md
https://githere.com/doc/vue.pdf

Vue 3

<i class="fas fa-plus"></i>
Add todo
</todo-button>
Or even other components:
<todo-button>
<!-- Use a component to add an icon -->
<font-awesome-icon name="plus"></font-awesome-icon>
Add todo
</todo-button>
If <todo—button>'s template did not contain a <S5 LOt> element, any content provided
between its opening and closing tag would be discarded.
<!-- todo-button component template -->

<button class="btn-primary ">
Create a new item
</button>

<todo-button>
<!-- Following text won't be rendered -->
Add todo

</todo-button>

#Render Scope

When you want to use data inside a slot, such as in:
<todo-button>
Delete a {{ item.name }}
</todo-button>
That slot has access to the same instance properties (i.e. the same "scope") as the rest of the

...

Parent Component :

Data
{ item: 'First Item' }

<todo-button>
Delete
</todo-button>

TodoButton

template.

https://qgithere.com/doc/vue3.pdf Page 57 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-slots.html#render-scope

Vue 3

The slot does not have access to <t 0do—button>'s scope. For example, trying to
access aCt 10N would not work:
todo-button action="delete
Clicking here will {{ action }} an item
<!--
The “action” will be undefined, because this content is passed
to <todo-button>, rather than defined _inside_ the
<todo-button> component.
-->
todo-button
As a rule, remember that:

Everything in the parent template is compiled in parent scope; everything in the child template is
compiled in the child scope.

#Fallback Content

There are cases when it's useful to specify fallback (i.e. default) content for a slot, to be rendered
only when no content is provided. For example, in a <submit—button> component:
button type-"submit
slot></slot
button

We might want the text "Submit" to be rendered inside the <butt0n> most of the time. To
make "Submit" the fallback content, we can place it in between the <S LOT> tags:
button type="submit
slot>Submit</slot
button
Now when we use <submit—button> in a parent component, providing no content for the
slot:
submit-button></submit-button
will render the fallback content, "Submit":
button type="submit
Submit
button
But if we provide content:
submit-button
Save
submit-button
Then the provided content will be rendered instead:
button type="submit
Save
button

#Named Slots

There are times when it's useful to have multiple slots. For example, in a <base-
1ayout> component with the following template:
div class="container
header
<!-- We want header content here -->
https://qgithere.com/doc/vue3.pdf Page 58 of 129

https://v3.vuejs.org/guide/component-slots.html#fallback-content
https://v3.vuejs.org/guide/component-slots.html#named-slots
https://githere.com/doc/vue.pdf

Vue 3

header
main
<!-- We want main content here -->
main
footer
<!-- We want footer content here -->
footer
div
For these cases, the <S Lot> element has a special attribute, Name, which can be used to
assign a unique ID to different slots so you can determine where content should be rendered:
div class="container
header
slot name="header slot
header
main
slot></slot
main
footer
slot name="footer slot
footer
div
A <s Lot> outlet without name implicitly has the name "default".
To provide content to named slots, we need to use the V—S Lot directive on
a<temp Late> element, providing the name of the slot as V—5 LOT's argument:
base-layout
template v-slot:header
h1-Here might be a page title</h1
template

template v-slot:default
p>A paragraph for the main content.</p
p>And another one.</p

template

template v-slot:footer
p>Here's some contact info</p
template

base-layout

Now everything inside the <temp Late> elements will be passed to the corresponding slots.
The rendered HTML will be:
div class="container
header
h1>Here might be a page title</h1
header
main
p>A paragraph for the main content.</p
p>And another one.</p

https://qgithere.com/doc/vue3.pdf Page 59 of 129

https://githere.com/doc/vue.pdf

Vue 3
main
footer
p>Here's some contact info</p
footer
div
Note that V—S LOT can only be added to a <temp Late> (with one exception)

#Scoped Slots

Sometimes, it's useful for slot content to have access to data only available in the child
component. It's a common case when a component is used to render an array of items, and we
want to be able to customize the way each item is rendered.

For example, we have a component, containing a list of todo-items.
app.component('todo-list’
data
return
items: ['Feed a cat'. 'Buy milk'

template:
ul
li v-for="(item, index) in items
item
li
ul

)

We might want to replace the slot to customize it on parent component:
todo-list
i class="fas fa-check i
span class="green">{{ item }}</span
todo-list

That won't work, however, because only the <todo-list> component has access to
the 1tem and we are providing the slot content from its parent.

To make 1tem available to the slot content provided by the parent, we can add
a <S Lot> element and bind it as an attribute:

ul
li v-for="(item, index) in items
slot :item="item slot
li

Attributes bound to a <S LOT> element are called slot props. Now, in the parent scope, we can
use V—5 LOT with a value to define a name for the slot props we've been provided:
todo-list
template v-slot:default="slotProps
i class="fas fa-check i
span class="green">{{ slotProps.item }}</span
template

todo-list
https://qgithere.com/doc/vue3.pdf Page 60 of 129

https://v3.vuejs.org/guide/component-slots.html#abbreviated-syntax-for-lone-default-slots
https://v3.vuejs.org/guide/component-slots.html#scoped-slots
https://githere.com/doc/vue.pdf

Vue 3

Parent Component

<todo-list>

<template v-slot:default="

 |
{{ .item }}

</template>
</todo-list>

TodolList

<1li v-for="1item in 1items'">
<slot :item="1item"></slot>

T MMM E EEEEEEEEEEEEEEEEEEEEEE®EEEE®®®E®E®E®E®®®E®EEE®EEEE®E®EEE®®®=m==»
B L L L L L L L R T I

In this example, we've chosen to name the object containing all our slot props S Lot P rops, but
you can use any nhame you like.

#Abbreviated Syntax for Lone Default Slots

In cases like above, when only the default slot is provided content, the component's tags can be
used as the slot's template. This allows us to use V—5 LOT directly on the component:
<todo-list v-slot:default="slotProps">

<i class="fas fa-check"></i>

{{ slotProps.item }}
</todo-list>
This can be shortened even further. Just as non-specified content is assumed to be for the default
slot, v—5 Lot without an argument is assumed to refer to the default slot:
<todo-list v-slot="slotProps">

<i class="fas fa-check"></i>

{{ slotProps.item }}</span=
</todo-list>

https://qgithere.com/doc/vue3.pdf Page 61 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-slots.html#abbreviated-syntax-for-lone-default-slots

Vue 3

Note that the abbreviated syntax for default slot cannot be mixed with named slots, as it would
lead to scope ambiguity:

<!-- INVALID, will result in warning -->
todo-list v-slot="slotProps
todo-list v-slot:default="slotProps
i class="fas fa-check i
span class="green">{{ slotProps.item }}</span
todo-list
template v-slot:other="otherSlotProps
slotProps is NOT available here
template
todo-list

Whenever there are multiple slots, use the full <temp Late> based syntax for all slots:
todo-list
template v-slot:default="slotProps
i class="fas fa-check [
span class="green">{{ slotProps.item }}</span
template

template v-slot:other="otherSlotProps

template
todo-list
#Destructuring Slot Props
Internally, scoped slots work by wrapping your slot content in a function passed a single
argument:
function (slotProps
// ... slot content ...

}

That means the value of V=5 LOT can actually accept any valid JavaScript expression that can
appear in the argument position of a function definition. So you can also use ES2015
destructuring to pull out specific slot props, like so:

todo-list v-slot="{ item }
i class="fas fa-check [
span class="green">{{ item }}</span
todo-list
This can make the template much cleaner, especially when the slot provides many props. It also
opens other possibilities, such as renaming props, e.g. 1temto todo:
todo-list v-slot="{ item: todo }
i class="fas fa-check [
span class="green">{{ todo }}</span
todo-list
You can even define fallbacks, to be used in case a slot prop is undefined:
todo-list v-slot="{ item = 'Placeholder’ }
i class="fas fa-check [
span class="green">{{ item }}</span
todo-list

https://qgithere.com/doc/vue3.pdf Page 62 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-slots.html#destructuring-slot-props
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Object_destructuring
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Object_destructuring

Vue 3
#Dynamic Slot Names

Dynamic directive arguments also work on V—S Lot allowing the definition of dynamic slot
names:

base-layout
template v-slot:;[dynamicSlotName]

template
base-layout

#Named Slots Shorthand

Similar to V—0N and V—bind, v—5s Lot also has a shorthand, replacing everything before the
argument (V—5 LOT 1) with the special symbol #. For example, V-5 Lot : header can be
rewritten as #header:
base-layout
template #header
h1>Here might be a page title</h1
template

template #default
p>A paragraph for the main content.</p
p>And another one.</p

template

template #footer
p>Here's some contact info</p
template

base-layout

However, just as with other directives, the shorthand is only available when an argument is
provided. That means the following syntax is invalid:

<!-- This will trigger a warning -->

todo-list #="{ item }
i class="fas fa-check [
span class="green">{{ item }}</span
todo-list
Instead, you must always specify the name of the slot if you wish to use the shorthand:
todo-list #default="{ item }
i class="fas fa-check [
span class="green">{{ item }}</span
todo-list

https://qgithere.com/doc/vue3.pdf Page 63 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-slots.html#dynamic-slot-names
https://v3.vuejs.org/guide/template-syntax.html#dynamic-arguments
https://v3.vuejs.org/guide/component-slots.html#named-slots-shorthand

Vue 3

Provide / inject

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

Usually, when we need to pass data from the parent to child component, we use props. Imagine
the structure where you have some deeply nested components and you only need something
from the parent component in the deep nested child. In this case, you still need to pass the prop
down the whole component chain which might be annoying.

For such cases, we can use the provide and inject pair. Parent components can serve as
dependency provider for all its children, regardless how deep the component hierarchy is. This

feature works on two parts: parent component hasa Prov 1de option to provide data and child
component has an 1N 7JjeCt option to start using this data.

rovide

>
<

Inject
—

For example, if we have a hierarchy like this:
Root
L— TodoList
— Todoltem
L— TodoListFooter
— ClearTodosButton
L— TodoListStatistics

If we want to pass the length of todo-items directly to TodoListStatistics, we would
pass the prop down the hierarchy: TodoLi1st -> TodoListFooter -
>TodoListStatistics. with provide/inject approach, we can do this directly:

const app = Vue.createApp

app.component('todo-list’
data
return
todos: ['Feed a cat', 'Buy tickets'

provide:
user: 'John Doe'

template:
https://qgithere.com/doc/vue3.pdf Page 64 of 129

https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-props.html
https://githere.com/doc/vue.pdf

Vue 3
div
todos.length

<!-- rest of the template -->
div

)

app.component('todo-list-statistics'
inject: ['user
created
console.log(Injected property: %/this.user}’) // > Injected property: John Doe

1
However, this won't work if we try to provide some component instance property here:
app.component('todo-list'
data
return
todos: |'Feed a cat’, 'Buy tickets'

provide:

todoLength: this.todos.length // this will result in error '‘Cannot read property 'length' of
undefined’

template:

)
To access component instance properties, we need to convert P rovide to be a function
returning an object
app.component('todo-list'
data
return
todos: |'Feed a cat', 'Buy tickets'

provide
return
todoLength: this.todos.length

template:

)

This allows us to more safely keep developing that component, without fear that we might
change/remove something that a child component is relying on. The interface between these
components remains clearly defined, just as with props.

In fact, you can think of dependency injection as sort of “long-range props”, except:
https://qgithere.com/doc/vue3.pdf Page 65 of 129

https://githere.com/doc/vue.pdf

Vue 3

« parent components don’t need to know which descendants use the properties it provides
« child components don’t need to know where injected properties are coming from

#Working with reactivity

In the example above, if we change the list of todos, this change won't be reflected in the
injected todoLength property. This is because provide/inject bindings
are not reactive by default. We can change this behavior by passing a ref property
or reactive objectto provide. In our case, if we wanted to react to changes in the
ancestor component, we would need to assign a Composition API Computed property to our
provided todoLength:
app.component('todo-list'

/...

provide

return
todoLength: Vue.computed(() => this.todos.length

)

In this, any change to todos. Length will be reflected correctly in the components,

where todoLength is injected. Read more about react ive provide/inject in
the Composition API section

Dynamic & Async Components

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

#Dynamic Components with keep—-alive

Earlier, we used the 15 attribute to switch between components in a tabbed interface:
component currentTabComponent component

When switching between these components though, you'll sometimes want to maintain their state
or avoid re-rendering for performance reasons. For example, when expanding our tabbed
interface a little:

You'll notice that if you select a post, switch to the Archive tab, then switch back to Posts, it's no
longer showing the post you selected. That's because each time you switch to a new tab, Vue

creates a new instance of the currentTabComponent.

Recreating dynamic components is normally useful behavior, but in this case, we'd really like
those tab component instances to be cached once they're created for the first time. To solve this

problem, we can wrap our dynamic component with a <keep—a Live> element:
<!-- Inactive components will be cached! -->
keep-alive
component currentTabComponent component
keep-alive

Now the Posts tab maintains its state (the selected post) even when it's not rendered.
Check out more details on <keep—a Live> in the APl reference.

https://qgithere.com/doc/vue3.pdf Page 66 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-provide-inject.html#working-with-reactivity
https://v3.vuejs.org/guide/composition-api-provide-inject.html#reactivity
https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-dynamic-async.html#dynamic-components-with-keep-alive
https://v3.vuejs.org/api/built-in-components.html#keep-alive

Vue 3

#Async Components

In large applications, we may need to divide the app into smaller chunks and only load a
component from the server when it's needed. To make that possible, Vue has
adefineAsyncComponent method:

const app = Vue.createApp

const AsyncComp = Vue.defineAsyncComponent
=>
new Promise((resolve, reject) =>
resolve
template: '<div>| am async!</div>'

)

app.component(‘async-example', AsyncComp

As you can see, this method accepts a factory function returning a Promise.
Promise's reS0 Lve callback should be called when you have retrieved your component
definition from the server. You can also call reject (reason) to indicate the load has failed.

You can also return a Promise in the factory function, so with Webpack 2 or later and ES2015
syntax you can do:

import | defineAsyncComponent } from 'vue'

const AsyncComp = defineAsyncComponent(() =>
import('./components/AsyncComponent.vue'

)

app.component(‘async-component', AsyncComp

You can also use defineAsyncComponent when registering a component locally:
import | createApp, defineAsyncComponent | from 'vue'

createApp

/...

components:
AsyncComponent: defineAsyncComponent(() =>
import('./components/AsyncComponent.vue'

)
#Using with Suspense

Async components are suspensible by default. This means if it has a <SUS pense=inthe
parent chain, it will be treated as an async dependency of that <SuUs pense>. In this case, the

loading state will be controlled by the <SuUS pense>, and the component's own loading, error,
delay and timeout options will be ignored.

https://qgithere.com/doc/vue3.pdf Page 67 of 129

https://v3.vuejs.org/guide/component-dynamic-async.html#async-components
https://v3.vuejs.org/guide/component-registration.html#local-registration
https://v3.vuejs.org/guide/component-dynamic-async.html#using-with-suspense
https://githere.com/doc/vue.pdf

Vue 3

The async component can opt-out of SUS pense control and let the component always control
its own loading state by specifying suspensible: false inits options.
You can check the list of available options in the API Reference

Template refs

This page assumes you've already read the Components Basics. Read that first if you are new to
components.

Despite the existence of props and events, sometimes you might still need to directly access a
child component in JavaScript. To achieve this you can assign a reference ID to the child

component or HTML element using the ref attribute. For example:
input ref="input

This may be useful when you want to, for example, programmatically focus this input on
component mount:

const app = Vue.createApp

app.component('base-input’
template:
input ref="input

methods:
focuslnput
this.$refs.input.focus

mounted
this.focuslnput

)

Also, you can add another ref to the component itself and use it to
trigger focusIn put event from the parent component:
base-input ref-"usernamelnput base-input

this.$refs.usernamelnput.focusinput
WARNING

$refs are only populated after the component has been rendered. It is only meant as an

escape hatch for direct child manipulation - you should avoid accessing $ re fs from within
templates or computed properties.

https://qgithere.com/doc/vue3.pdf Page 68 of 129

https://v3.vuejs.org/api/global-api.html#arguments-4
https://v3.vuejs.org/guide/component-basics.html
https://githere.com/doc/vue.pdf

Vue 3

Handling Edge Cases

This page assumes you've already read the Components Basics. Read that first if you are new to
components.
Note

All the features on this page document the handling of edge cases, meaning unusual situations
that sometimes require bending Vue's rules a little. Note however, that they all have
disadvantages or situations where they could be dangerous. These are noted in each case, so
keep them in mind when deciding to use each feature.

#Controlling Updates

Thanks to Vue's Reactivity system, it always knows when to update (if you use it correctly). There
are edge cases, however, when you might want to force an update, despite the fact that no
reactive data has changed. Then there are other cases when you might want to prevent
unnecessary updates.

#Forcing an Update
If you find yourself needing to force an update in Vue, in 99.99% of cases, you've made a mistake
somewhere. For example, you may be relying on state that isn't tracked by Vue's reactivity
system, e.g. with data property added after component creation.
However, if you've ruled out the above and find yourself in this extremely rare situation of having
to manually force an update, you can do so with $TorceUpdate.
#Cheap Static Components with v—once
Rendering plain HTML elements is very fast in Vue, but sometimes you might have a component
that contains a lot of static content. In these cases, you can ensure that it's only evaluated once
and then cached by adding the V—0NCE directive to the root element, like this:
app.component('terms-of-service'
template:
div v-once
h1>Terms of Service</h1
... alot of static content ...
div

)
TIP

Once again, try not to overuse this pattern. While convenient in those rare cases when you have
to render a lot of static content, it's simply not necessary unless you actually notice slow
rendering - plus, it could cause a lot of confusion later. For example, imagine another developer
who's not familiar with V—0NCe€ or simply misses it in the template. They might spend hours
trying to figure out why the template isn't updating correctly.

https://qgithere.com/doc/vue3.pdf Page 69 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/component-basics.html
https://v3.vuejs.org/guide/component-edge-cases.html#controlling-updates
https://v3.vuejs.org/guide/component-edge-cases.html#forcing-an-update
https://v3.vuejs.org/api/instance-methods.html#forceupdate
https://v3.vuejs.org/guide/component-edge-cases.html#cheap-static-components-with-v-once

Vue 3
Transitions & Animation

TBD

https://qgithere.com/doc/vue3.pdf Page 70 of 129

https://githere.com/doc/vue.pdf

Vue 3

Transitions & Animation

Mixins
#Basics

Mixins distribute reusable functionalities for Vue components. A mixin object can contain any
component options. When a component uses a mixin, all options in the mixin will be "mixed" into

the component's own options.
Example:
// define a mixin object
const myMixin =
created
this.hello

methods:
hello
console.log('hello from mixin!'

}

// define an app that uses this mixin
const app = Vue.createApp
mixins: | myMixin

)

app-mount(‘#mixins-basic') // => "hello from mixin!"

#0ption Merging

When a mixin and the component itself contain overlapping options, they will be "merged" using

appropriate strategies.

For example, data objects undergo a recursive merge, with the component's data taking priority in

cases of conflicts.
const myMixin =
data
return
message: 'hello’
foo: 'abc'

const app = Vue.createApp
mixins: [myMixin
data
return
message: 'goodbye’
bar: ‘def'

https://qithere.com/doc/vue3.pdf

Page 71 of 129

https://v3.vuejs.org/guide/mixins.html#basics
https://v3.vuejs.org/guide/mixins.html#option-merging
https://githere.com/doc/vue.pdf

Vue 3

created
console.log(this.$data) // => { message: "goodbye", foo: "abc", bar: "def" }

)

Hook functions with the same name are merged into an array so that all of them will be called.
Mixin hooks will be called before the component's own hooks.

const myMixin =
created
console.log('mixin hook called'

const app = Vue.createApp
mixins: [myMixin
created
console.log('‘component hook called'

)

// => "mixin hook called"
// => "component hook called"
Options that expect object values, for

example methods, components and directives, will be merged into the same object.
The component's options will take priority when there are conflicting keys in these objects:

const myMixin =
methods:
foo
console.log('foo'

conflicting
console.log('from mixin'

const app = Vue.createApp
mixins: |myMixin
methods:
bar
console.log('bar

conflicting
console.log('from self'

)

const vm = app.mount('#mixins-basic'

https://qgithere.com/doc/vue3.pdf Page 72 of 129

https://githere.com/doc/vue.pdf

Vue 3

vm.foo() // => "foo"
vm.bar() // => "bar"
vm.conflicting() // => "from self"

#Global Mixin

You can also apply a mixin globally for a Vue application:

const app = Vue.createApp
myOption: 'hello!
})

// inject a handler for ‘'myOption” custom option
app-mixin
created
const myOption = this. $options. myOption
if (myOption
console.log(myOption

)

app.mount('#mixins-global’) // => "hello!"

Use with caution! Once you apply a mixin globally, it will affect every component instance created

afterwards in the given app (for example, child components):

const app = Vue.createApp
myOption: 'hello!
})

// inject a handler for ‘'myOption” custom option
app-mixin
created
const myOption = this. $options. myOption
if (myOption
console.log(myOption

)

// add myOption also to child component
app.component('test-component'
myOption: 'hello from component!’

)

app-mount(‘#mixins-global'

// => "hello!"
// => "hello from component!"

https://qithere.com/doc/vue3.pdf

Page 73 of 129

https://v3.vuejs.org/guide/mixins.html#global-mixin
https://githere.com/doc/vue.pdf

Vue 3

In most cases, you should only use it for custom option handling like demonstrated in the
example above. It's also a good idea to ship them as Plugins to avoid duplicate application.

#Custom Option Merge Strategies

When custom options are merged, they use the default strategy which overwrites the existing
value. If you want a custom option to be merged using custom logic, you need to attach a

function to app.config.optionMergeStrategies:
const app = Vue.createApp

app.config.optionMergeStrategies.customOption = (toVal, fromVal) =>
// return mergedVal

}

The merge strategy receives the value of that option defined on the parent and child instances as
the first and second arguments, respectively. Let's try to check what do we have in these
parameters when we use a mixin:

const app = Vue.createApp
custom: 'hello!’

)

app.config.optionMergeStrategies.custom = (toVal, fromVal) =>
console.log(fromVal, toVal
// => "goodbye!", undefined
// => "hello", "goodbye!"
return fromVal || toVal

}

app-mixin
custom: 'goodbye!'
created
console.log(this.$options.custom) // => "hello!"

)

As you can see, in the console we have toVa land fromVal printed first from the mixin and
then from the app. We always return T romVa L if it exists, that's why this.

$options.customissetto heLlo! inthe end. Let's try to change a strategy to always
return a value from the child instance:
const app = Vue.createApp

custom: 'hello!’

)

app.config.optionMergeStrategies.custom = (toVal, fromVal) => toVal || fromVal

app.mixin
custom: '‘goodbye!’
created
console.log(this.$options.custom) // => "goodbye!"

https://qgithere.com/doc/vue3.pdf Page 74 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/plugins.html
https://v3.vuejs.org/guide/mixins.html#custom-option-merge-strategies

Vue 3
#Precautions

In Vue 2, mixins were the primary tool to abstract parts of component logic into reusable chunks.
However, they have a few issues:

+ Mixins are conflict-prone: Since properties from each feature are merged into the same
component, you still have to know about every other feature to avoid property name
conflicts and for debugging.

+ Reusability is limited: we cannot pass any parameters to the mixin to change its logic which
reduces their flexibility in terms of abstracting logic

To address these issues, we added a new way to organize code by logical concerns:
the Composition API.

Custom Directives
#Intro

In addition to the default set of directives shipped in core (like V—mode L or v—Show), Vue also
allows you to register your own custom directives. Note that in Vue, the primary form of code
reuse and abstraction is components - however, there may be cases where you need some low-
level DOM access on plain elements, and this is where custom directives would still be useful. An
example would be focusing on an input element, like this one:

When the page loads, that element gains focus (note: autoT0CUS doesn't work on mobile
Safari). In fact, if you haven't clicked on anything else since visiting this page, the input above
should be focused now. Also, you can click on the Re run button and input will be focused.
Now let's build the directive that accomplishes this:
const app = Vue.createApp
// Register a global custom directive called "v-focus’
app.directive('focus’
//' When the bound element is mounted into the DOM...
mounted(el
// Focus the element
el.focus

)

If you want to register a directive locally instead, components also accept
adirectives option:
directives:
focus:
// directive definition
mounted(el
el.focus

}

Then in a template, you can use the new V—T0CUS attribute on any element, like this:
input v-focus

https://qgithere.com/doc/vue3.pdf Page 75 of 129

https://v3.vuejs.org/guide/mixins.html#precautions
https://v3.vuejs.org/guide/composition-api-introduction.html
https://v3.vuejs.org/guide/custom-directive.html#intro
https://githere.com/doc/vue.pdf

Vue 3
#Hook Functions

A directive definition object can provide several hook functions (all optional):

* beforeMount: called when the directive is first bound to the element and before parent
component is mounted. This is where you can do one-time setup work.

* mounted: called when the bound element's parent component is mounted.

* beforeUpdate: called before the containing component's VNode is updated

Note
We'll cover VNodes in more detail later, when we discuss render functions.

* updated: called after the containing component's VNode and the VNodes of its
children have updated.

e beforeUnmount: called before the bound element's parent component is unmounted

e unmounted: called only once, when the directive is unbound from the element and the
parent component is unmounted.

You can check the arguments passed into these hooks (i.e. € L, binding, vnode,
and prevVnode) in Custom Directive API

#Dynamic Directive Arguments

Directive arguments can be dynamic. For example, in v—myd irective:
[argument]="value", the argument can be updated based on data properties in our
component instance! This makes our custom directives flexible for use throughout our application.
Let's say you want to make a custom directive that allows you to pin elements to your page using
fixed positioning. We could create a custom directive where the value updates the vertical

positioning in pixels, like this:
div id="dynamic-arguments-example" class="demo
p>Scroll down the page</p
p v-pin="200">Stick me 200px from the top of the page-/p
div

const app = Vue.createApp

app.directive('pin'
mounted(el, binding
el.style position = 'fixed'
// binding.value is the value we pass to directive - in this case, it's 200
el.style.top = binding.value + 'px’

)

app.mount(‘#dynamic-arguments-example'

This would pin the element 200px from the top of the page. But what happens if we run into a
scenario when we need to pin the element from the left, instead of the top? Here's where a
dynamic argument that can be updated per component instance comes in very handy:

https://qgithere.com/doc/vue3.pdf Page 76 of 129

https://v3.vuejs.org/guide/custom-directive.html#hook-functions
https://v3.vuejs.org/guide/render-function.html#the-virtual-dom-tree
https://v3.vuejs.org/api/application-api.html#directive
https://v3.vuejs.org/guide/custom-directive.html#dynamic-directive-arguments
https://githere.com/doc/vue.pdf

Vue 3

div id="dynamicexample

h3>Scroll down inside this section | </h3

p v-pin:/direction|="200">I am pinned onto the page at 200px to the left.</p
div

const app = Vue.createApp
data
return
direction: 'right'

)

app.directive('pin’
mounted(el, binding
el style position = 'fixed'
// binding.arg is an argument we pass to directive
const s = binding.arg || 'top'
el.style/s| = binding.value + 'px'

)

app.mount('‘#dynamic-arguments-example'

Our custom directive is now flexible enough to support a few different use cases. To make it even
more dynamic, we can also allow to modify a bound value. Let's create an additional

property pinPadding and bind it to the <input type="range">

div id="dynamicexample
h2>Scroll down the page</h2
input type="range" min="0" max-="500" v-model-"pinPadding

p v-pin:[direction|="pinPadding">Stick me {{ pinPadding + 'px' }} from the {{ direction }} of the
page-/p
div

const app = Vue.createApp
data
return
direction: 'right'
pinPadding: 200

)

Now let's extend our directive logic to recalculate the distance to pin on component update:

https://qgithere.com/doc/vue3.pdf Page 77 of 129

https://githere.com/doc/vue.pdf

Vue 3

app.directive('pin’
mounted(el, binding
el style position = 'fixed'
const s = binding.arg || 'top'
el style|s| = binding.value + 'px'

updated(el. binding
const s = binding.arg || 'top'
el style|s| = binding.value + 'px'

)

#Function Shorthand

In previous example, you may want the same behavior on mounted and updated, but don't
care about the other hooks. You can do it by passing the callback to directive:

app.directive('pin', (el, binding) =>
el.style.position = 'fixed'
const s = binding.arg || 'top'
el.style/s| = binding.value + 'px’

)
#0bject Literals

If your directive needs multiple values, you can also pass in a JavaScript object literal. Remember,
directives can take any valid JavaScript expression.

div v-demo color: 'white', text: 'hello!" div

app.directive('demo’, (el, binding) =>
console.log(binding.value.color) // => "white"
console.log(binding.value.text) // => "hello!"

Y
#Usage on Components

When used on components, custom directive will always apply to component's root node,
similarly to non-prop attributes.

my-component v-demo-"test my-component
1
app.component('my-component'
template:
div> // v-demo directive will be applied here
span>My component content</span
div

1)
Unlike attributes, directives can't be passed to a different element with Vv—bind="$attrs".

With fragments support, components can potentially have more than one root nodes. When
applied to a multi-root component, directive will be ignored and the warning will be thrown.

https://qgithere.com/doc/vue3.pdf Page 78 of 129

https://v3.vuejs.org/guide/custom-directive.html#function-shorthand
https://v3.vuejs.org/guide/custom-directive.html#object-literals
https://v3.vuejs.org/guide/custom-directive.html#usage-on-components
https://v3.vuejs.org/guide/component-attrs.html
https://v3.vuejs.org/guide/migration/fragments.html#overview
https://githere.com/doc/vue.pdf

Vue 3
Teleport

Learn how to use teleport with a free lesson on Vue School

Vue encourages us to build our Uls by encapsulating Ul and related behavior into components.
We can nest them inside one another to build a tree that makes up an application Ul.

However, sometimes a part of a component's template belongs to this component logically, while
from a technical point of view, it would be preferable to move this part of the template somewhere
else in the DOM, outside of the Vue app.

A common scenario for this is creating a component that includes a full-screen modal. In most
cases, you'd want the modal's logic to live within the component, but the positioning of the modal
quickly becomes difficult to solve through CSS, or requires a change in component composition.

Consider the following HTML structure.
body
div style="position: relative
h3>Tooltips with Vue 3 Teleport</h3
div
modal-button></modal-button
div
div
body
Let's take a look at moda Ll-button.

The component will have a button element to trigger the opening of the modal, and

a d1V element with a class of . moda L, which will contain the modal's content and a button to
self-close.

const app = Vue.createApp

app.component(‘modal-button’

template:
button modalOpen = true
Open full screen modal!
button

div v-if="modalOpen" class="modal
div
I'm a modal!
button modalOpen = false
Close
button
div
div
data

return
modalOpen: false

https://qgithere.com/doc/vue3.pdf Page 79 of 129

https://githere.com/doc/vue.pdf
https://vueschool.io/lessons/vue-3-teleport?friend=vuejs

Vue 3

When using this component inside the initial HTML structure, we can see a problem - the modal is
being rendered inside the deeply nested d 1V and the position: absolute of the modal
takes the parent relatively positioned d 1V as reference.

Teleport provides a clean way to allow us to control under which parent in our DOM we want a
piece of HTML to be rendered, without having to resort to global state or splitting this into two
components.

Let's modify our moda l—button touse <teleport> and tell Vue "teleport this
HTML to the "body" tag".

app.component(‘'modal-button’

template:
button modalOpen = true
Open full screen modal! (With teleport!)
button

teleport to="body
div v-if="modalOpen" class-"modal
div
I'm a teleported modal!
(My parent is "body")
button modalOpen = false
Close
button
div
div
teleport

data
return
modalOpen: false

1
As a result, once we click the button to open the modal, Vue will correctly render the modal's
content as a child of the body tag.

#Using with Vue components

If <te1epo I"'t> contains a Vue component, it will remain a logical child component of
the <te leport>'s parent:
const app = Vue.createApp
template:
<h1>Root instance</h1>
<parent-component />

)

app.component('parent-component’
template:

https://qgithere.com/doc/vue3.pdf Page 80 of 129

https://v3.vuejs.org/guide/teleport.html#using-with-vue-components
https://githere.com/doc/vue.pdf

Vue 3

<h2>This is a parent component</h2>
<teleport to="#endofbody">

<child-component name="John" />
</teleport>

)

app.component('child-component’
props: ['name’
template:

div>Hello, {{ name div

)
In this case, even when Child—component is rendered in the different place, it will remain a
child of parent—component and will receive a Name prop from it.

This also means that injections from a parent component work as expected, and that the child
component will be nested below the parent component in the Vue Devtools, instead of being
placed where the actual content moved to.

#Using multiple teleports on the same target

A common use case scenario would be a reusable <Moda L> component of which there might
be multiple instances active at the same time. For this kind of scenario,

multiple <te1epo I"t> components can mount their content to the same target element. The

order will be a simple append - later mounts will be located after earlier ones within the target
element.

teleport to="#modals
div>A</div
teleport

teleport to="#modals
div>B</div
teleport

<!-- result-->
div id="modals
div>A</div
div>B</div
div
You can check <te1epo Ir't> component options in the AP reference.

https://qgithere.com/doc/vue3.pdf Page 81 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/teleport.html#using-multiple-teleports-on-the-same-target
https://v3.vuejs.org/api/built-in-components.html#teleport

Vue 3

Render Functions

Vue recommends using templates to build applications in the vast majority of cases. However,
there are situations where we need the full programmatic power of JavaScript. That's where we
can use the render function.

Let's dive into an example where a rende r () function would be practical. Say we want to
generate anchored headings:

h1
a name-="hello-world" href="#hello-world
Hello world!
a
</h1>
Anchored headings are used very frequently, we should create a component:
anchored-heading 1">Hello world!</anchored-heading

The component must generate a heading based on the Leve | prop, and we quickly arrive at
this:
const app = Vue.createApp

app.component(‘anchored-heading’

template:

h1 v-if="level ===
slot></slot
h1

h2 v-else-if="level ===
slot></slot
h2

h3 v-else-if="level ===
slot></slot
h3

h4 v-else-if="level ===
slot></slot
h4

h5 v-else-if="level ===
slot></slot
h5

h6 v-else-if="level ===
slot></slot
h6

props:

level:

type: Number.
required: true

https://qgithere.com/doc/vue3.pdf Page 82 of 129

https://githere.com/doc/vue.pdf

Vue 3

This template doesn't feel great. It's not only verbose, but we're duplicating <S lot></

s lot> for every heading level. And when we add the anchor element, we have to again
duplicate it in every V—1T/v—else—1f branch.

While templates work great for most components, it's clear that this isn't one of them. So let's try
rewriting it with a rende r () function:

const app = Vue.createApp

app.component(‘anchored-heading'
render
const { h} =Vue

return h
'h' + this.level, // tag name
// props/attributes
this.$slots.default() // array of children

props:

level:
type: Number.
required: true

)

The render () function implementation is much simpler, but also requires greater familiarity
with component instance properties. In this case, you have to know that when you pass children
without a V—5 LOT directive into a component, like the He L Lo world! inside

of anchored—heading, those children are stored on the component instance

at $slots.default (). If you haven't already, it's recommended to read through
the instance properties API before diving into render functions.

#The DOM tree

Before we dive into render functions, it’s important to know a little about how browsers work. Take
this HTML for example:

div
h1-My title</h1
Some text content
<!-- TODO: Add tagline -->
div
When a browser reads this code, it builds a tree of "DOM nodes" to help it keep track of
everything.
The tree of DOM nodes for the HTML above looks like this:

https://qgithere.com/doc/vue3.pdf Page 83 of 129

https://v3.vuejs.org/api/instance-properties.html
https://v3.vuejs.org/guide/render-function.html#the-dom-tree
https://javascript.info/dom-nodes
https://githere.com/doc/vue.pdf

Vue 3

Some text
content

#text #comment

#Htext

Every element is a node. Every piece of text is a node. Even comments are nodes! Each node can
have children (i.e. each node can contain other nodes).

Updating all these nodes efficiently can be difficult, but thankfully, we never have to do it
manually. Instead, we tell Vue what HTML we want on the page, in a template:

h1={{ blogTitle }}</h1
Or in a render function:
render
return Vue.h('h1' this.blogTitle
}
And in both cases, Vue automatically keeps the page updated, even
when b LlogT1it Le changes.

#The Virtual DOM tree

Vue keeps the page updated by building a virtual DOM to keep track of the changes it needs to
make to the real DOM. Taking a closer look at this line:

return Vue.h('h1' this.blogTitle

What is the h () function returning? It's not exactly a real DOM element. It returns a plain object
which contains information describing to Vue what kind of node it should render on the page,
including descriptions of any child nodes. We call this node description a "virtual node", usually

abbreviated to VNode. "Virtual DOM" is what we call the entire tree of VNodes, built by a tree of
Vue components.

#h() Arguments

The h () function is a utility to create VNodes. It could perhaps more accurately be

named createVNode () , but it's called h () due to frequent use and for brevity. It accepts
three arguments:

// @returns {VNode}

h

https://qgithere.com/doc/vue3.pdf Page 84 of 129

https://v3.vuejs.org/guide/render-function.html#the-virtual-dom-tree
https://v3.vuejs.org/guide/render-function.html#h-arguments
https://githere.com/doc/vue.pdf

Vue 3

// {String | Object | Function } tag

// An HTML tag name, a component or an async component.
// ' Using function returning null would render a comment.

//

// Required.

‘div'’

// {Object} props

// An object corresponding to the attributes, props and events
// we would use in a template.

//

// Optional.

{1

// {String | Array | Object} children

// Children VNodes, built using "h()’,

// or using strings to get 'text VNodes' or
// an object with slots.

//

// Optional.

'Some text comes first.'

h('h1', 'A headline'

h(MyComponent
someProp: 'foobar

)
#Complete Example

With this knowledge, we can now finish the component we started:

const app = Vue.createApp

/** Recursively get text from children nodes */
function getChildrenTextContent(children
return children
map(node =>
return typeof node.children === 'string'
? node.children
: Array.isArray(node.children
? getChildrenTextContent(node.children

join("'

app.component(‘anchored-heading’
render

// create kebab-case id from the text contents of the children
https://qithere.com/doc/vue3.pdf

Page 85 of 129

https://v3.vuejs.org/guide/render-function.html#complete-example
https://githere.com/doc/vue.pdf

Vue 3

const headingld = getChildrenTextContent(this $slots. default
toLowerCase
replace(A\W+/g, '-') // replace non-word characters with dash
replace(/(N-|-$)/g, ') // remove leading and trailing dashes

return Vue.h('h' + this.level
Vue.h

a

name: headingld
href: '#' + headingld

this. $slots.default

props:
level:

type: Number.

required: true

N
#Constraints
#VNodes Must Be Unique

All VNodes in the component tree must be unique. That means the following render function is
invalid:
render
const myParagraphVNode = Vue.h('p', 'hi'
return Vue. h('div'
// Yikes - duplicate VNodes!
myParagraphVNode, myParagraphVNode

}

If you really want to duplicate the same element/component many times, you can do so with a
factory function. For example, the following render function is a perfectly valid way of rendering 20
identical paragraphs:

render
return Vue.h('div'
Array.apply(null, { length: 20 }).map(() =>
return Vue.h('p', 'hi'

}
#Replacing Template Features with Plain JavaScript
#v-1if and v—for

https://qgithere.com/doc/vue3.pdf Page 86 of 129

https://v3.vuejs.org/guide/render-function.html#constraints
https://v3.vuejs.org/guide/render-function.html#vnodes-must-be-unique
https://v3.vuejs.org/guide/render-function.html#replacing-template-features-with-plain-javascript
https://v3.vuejs.org/guide/render-function.html#v-if-and-v-for
https://githere.com/doc/vue.pdf

Vue 3

Wherever something can be easily accomplished in plain JavaScript, Vue render functions do not
provide a proprietary alternative. For example, in a template using V=11 and v—Tor:
ul v-if="items.length
li v-for="item in items">{{ item.name }}</li

p v-else>No items found.</p

This could be rewritten with JavaScript's 1 /e Lse and map() in a render function:
props: |'items'
render
if (this.items.length
return Vue.h('ul', this.items.map/((item) =>
return Vue.h('li*, item.name

else
return Vue.h('p', 'No items found.'

}
#v-model

The v—mode L directive is expanded

tomode LValue and onUpdate:mode lVa lue props during template compilation—we
will have to provide these props ourselves:

props: ['modelValue'
render
return Vue.h(SomeComponent
modelValue: this.modelValue
'‘onUpdate:modelValue': value => this. $emit('update:modelValue', value

}
#v-on

We have to provide a proper prop name for the event handler, e.g., to handle C L1CK events, the
prop name would be onCLick.
render
return Vue. h('div'
onClick: $event => console.log('clicked', $event.target

}
#Event Modifiers

For the . pass ive, . capt ure, and . 0nce event modifiers, they can be concatenated after
event name using camel case.

For example:
render
return Vue.h('input’'
onClickCapture: this.doThisInCapturingMode
onKeyupOnce: this.doThisOnce
onMouseoverOnceCapture: this.doThisOncelnCapturingMode

https://qgithere.com/doc/vue3.pdf Page 87 of 129

https://v3.vuejs.org/guide/render-function.html#v-model
https://v3.vuejs.org/guide/render-function.html#v-on
https://v3.vuejs.org/guide/render-function.html#event-modifiers
https://githere.com/doc/vue.pdf

Vue 3
}

For all other event and key modifiers, no special APl is necessary, because we can use event
methods in the handler:

Modifier(s) Equivalent in Handler

.stop event.stopPropagation()

.prevent event.preventDefault()

self if (event.target !== event.currentTarget)
’ return
Kevs: if (event.keyCode !== 13)

e)rl1fer 13 return (change 13 to another key code for other key
' e modifiers)

; : if (levent.ctrlKey)
Mgf;f{ersal(&ys.smft e return (change ctrlKey to altKey, shiftKey,
’ S e or metaKey, respectively)

Here's an example with all of these modifiers used together:
render
return Vue.h('input'
onKeyUp: event =>
// Abort if the element emitting the event is not
// the element the event is bound to
if (event.target |== event.currentTarget) return
// Abort if the key that went up is not the enter
// key (13) and the shift key was not held down
// at the same time
if (levent shiftKey || event keyCode !== 13) return
// Stop event propagation
event.stopPropagation
// Prevent the default keyup handler for this element
event preventDefault
/...

}
#Slots

You can access slot contents as Arrays of VNodes from this. $slots:
render

/] "<div><slot></slot></div>’

return Vue.h('div' this.$slots.default

}

props: ['message’
render

https://qgithere.com/doc/vue3.pdf Page 88 of 129

https://githere.com/doc/vue.pdf
http://keycode.info/
https://v3.vuejs.org/guide/render-function.html#slots
https://v3.vuejs.org/api/instance-properties.html#slots

Vue 3

/] "<div><slot :text="message"></slot></div>"
return Vue h('div', {}, this $slots default
text: this.message
h)
}

To pass slots to a child component using render functions:
render
// "<div><child v-slot="props">{{ props.text }}</child></div>'
return Vue h('div'
Vue.h
Vue.resolveComponent(‘child'

// pass ‘slots” as the children object
// in the form of { name: props => VNode | Array<VNode> }

default: (props) => Vue.h('span’, props.text

)
#JSX

If we're writing a lot of render functions, it might feel painful to write something like this:
Vue h
Vue.resolveComponent(‘anchored-heading'

level: 1

default: () => [Vue.h('span’', 'Hello'), ' world!'

)

Especially when the template version is so concise in comparison:
anchored-heading 1 span>Hello world! </anchored-heading

That's why there's a Babel plugin to use JSX with Vue, getting us back to a syntax that's closer to
templates:

import AnchoredHeading from './AnchoredHeading.vue'

const app = createApp
render
return
AnchoredHeading level={1
span>Hello world!
AnchoredHeading

https://qgithere.com/doc/vue3.pdf Page 89 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/render-function.html#jsx
https://github.com/vuejs/jsx-next

Vue 3

app-mount(‘#demo’
For more on how JSX maps to JavaScript, see the usage docs.

Plugins

Plugins are self-contained code that usually add global-level functionality to Vue. It is either
an 0bject that exposes an install() method, ora function.

There is no strictly defined scope for a plugin, but common scenarios where plugins are useful
include:

1. Add some global methods or properties, e.g. vue-custom-element.
2. Add one or more global assets: directives/filters/transitions etc. (e.g. vue-touch).
3. Add some component options by global mixin (e.g. vue-router).

4. Add some global instance methods by attaching them
to config.globalProperties.

5. Alibrary that provides an API of its own, while at the same time injecting some combination
of the above (e.g. vue-router).

#Writing a Plugin

In order to better understand how to create your own Vue.js plugins, we will create a very
simplified version of a plugin that displays 118n ready strings.

Whenever this plugin is added to an application, the 1nSsta L L method will be called if it is an
object. If it is a funct ion, the function itself will be called. In both cases, it will receive two
parameters - the 2P object resulting from Vue's CreateApp, and the options passed in by
the user.

Let's begin by setting up the plugin object. It is recommended to create it in a separate file and
export it, as shown below to keep the logic contained and separate.

// plugins/i18n.js
export default
install: (app, options) =>
// Plugin code goes here

}

We want to make a function to translate keys available to the whole application, so we will expose
it using app.config.globalProperties.

This function will receive a key string, which we will use to look up the translated string in the
user-provided options.

// plugins/i18n.js
export default
install: (app, options) =>
app.config.globalProperties. $translate = key =>
return key.split(".").reduce((o, i) =>
if (o) return oli
options

https://qgithere.com/doc/vue3.pdf Page 90 of 129

https://github.com/vuejs/jsx-next#installation
https://github.com/karol-f/vue-custom-element
https://github.com/vuejs/vue-touch
https://github.com/vuejs/vue-router
https://github.com/vuejs/vue-router
https://v3.vuejs.org/guide/plugins.html#writing-a-plugin
https://githere.com/doc/vue.pdf

Vue 3

}

We will assume that our users will pass in an object containing the translated keys in
the Opt 10NS parameter when they use the plugin. Our $trans Late function will take a
string such as greet ings . heL'l0o, look inside the user provided configuration and return
the translated value - in this case, Bonjour!
Ex:
greetings:

hello: 'Bonjour!'

}

Plugins also allow us to use inj eCT to provide a function or attribute to the plugin's users. For

example, we can allow the application to have access to the Op T 10NS parameter to be able to
use the translations object.

// plugins/i18n.js
export default
install: (app, options) =>
app.config.globalProperties $translate = key =>
return key.split('.").reduce((o, i) =>
if (0) return oli
options

app.provide('i18n', options

}

Plugin users will now be ableto inject ['118n"] into their components and access the
object.
Additionally, since we have access to the dP D object, all other capabilities like
using M1X1n and directive are available to the plugin. To learn more
about CreateApp and the application instance, check out the Application API documentation.
// plugins/i18n.js
export default
install: (app, options) =>
app.config.globalProperties $translate = (key) =>
return key.split(".'
reducel((o, i) => { if (0) return oli| }, options

app.provide('i18n', options
app.directive('my-directive'

mounted (el, binding, vnode, oldVnode
// some logic ...

https://qgithere.com/doc/vue3.pdf Page 91 of 129

https://v3.vuejs.org/api/application-api.html
https://githere.com/doc/vue.pdf

Vue 3

app.mixin
created
// some logic ...

}
#Using a Plugin

After a Vue app has been initialized with CreateApp (), you can add a plugin to your
application by calling the use () method.

We will use the 118NnP Lugin we created in the Writing a Plugin section for demo purposes.

The use () method takes two parameters. The first one is the plugin to be installed, in this
case 118nPlugin.

It also automatically prevents you from using the same plugin more than once, so calling it
multiple times on the same plugin will install the plugin only once.

The second parameter is optional, and depends on each particular plugin. In the case of the
demo 118nP Lugin, itis an object with the translated strings.

INFO

If you are using third party plugins such as Vuex or Vue Router, always check the
documentation to know what that particular plugin expects to receive as a second parameter.
import { createApp | from 'vue'

import Root from './App.vue'

import i18nPlugin from './plugins/i18n'

const app = createApp(Root
const i18nStrings =
greetings:
hi: '‘Hallo!'

app.use(i18nPlugin, i18nStrings
app.mount('#app’
Checkout awesome-vue for a huge collection of community-contributed plugins and libraries.

https://qgithere.com/doc/vue3.pdf Page 92 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/plugins.html#using-a-plugin
https://v3.vuejs.org/guide/plugins.html#writing-a-plugin
https://github.com/vuejs/awesome-vue#components--libraries

Vue 3

Advanced Guides
Reactivity in Depth

Now it’s time to take a deep dive! One of Vue’s most distinct features is the unobtrusive reactivity
system. Models are proxied JavaScript objects. When you modify them, the view updates. It
makes state management simple and intuitive, but it’s also important to understand how it works
to avoid some common gotchas. In this section, we are going to dig into some of the lower-level
details of Vue’s reactivity system.

#What is Reactivity?

This term comes up in programming quite a bit these days, but what do people mean when they
say it? Reactivity is a programming paradigm that allows us to adjust to changes in a declarative
manner. The canonical example that people usually show, because it’s a great one, is an excel
spreadsheet.

If you put the number two in the first cell, and the number 3 in the second and asked for the SUM,
the spreadsheet would give it to you. No surprises there. But if you update that first number, the
SUM automagically updates too.

JavaScript doesn’t usually work like this -- If we were to write something comparable in
JavaScript:

varvall =2
varval2 = 3
var sum = vall + val2

// sum
//'5

vall =3

// sum

/15

If we update the first value, the sum is not adjusted.

So how would we do this in JavaScript?
« Detect when there’s a change in one of the values
+ Track the function that changes it
« Trigger the function so it can update the final value

#How Vue Tracks These Changes

When you pass a plain JavaScript object to an application or component instance as

its data option, Vue will walk through all of its properties and convert them to Proxies using a
handler with getters and setters. This is an ES6-only feature, but we offer a version of Vue 3 that

uses the older Object.defineProperty to support IE browsers. Both have the same
surface API, but the Proxy version is slimmer and offers improved performance.

That was rather quick and requires some knowledge of Proxies to understand! So let’s dive in a
bit. There’s a lot of literature on Proxies, but what you really need to know is that a Proxy is an
object that encases another object or function and allows you to intercept it.

We use it like this: new Proxy(target, handler)

const dinner =
meal: 'tacos'

https://qgithere.com/doc/vue3.pdf Page 93 of 129

https://v3.vuejs.org/guide/reactivity.html#what-is-reactivity
https://v3.vuejs.org/guide/reactivity.html#how-vue-tracks-these-changes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://githere.com/doc/vue.pdf

Vue 3

const handler =
get(target, prop
return target prop

const proxy = new Proxy(dinner, handler
console.log(proxy.meal

// tacos

Ok, so far, we’re just wrapping that object and returning it. Cool, but not that useful yet. But watch
this, we can also intercept this object while we wrap it in the Proxy. This interception is called a
trap.

const dinner =
meal: 'tacos'

}

const handler =
get(target, prop
console.log('intercepted!'
return target prop

const proxy = new Proxy(dinner, handler
console.log(proxy.meal

// intercepted!
// tacos

Beyond a console log, we could do anything here we wish. We could even not return the real
value if we wanted to. This is what makes Proxies so powerful for creating APls.

Furthermore, there’s another feature Proxies offer us. Rather than just returning the value like
this: target [propl, we could take this a step further and use a feature called Re f lect,
which allows us to do proper th 1S binding. It looks like this:
const dinner =

meal: 'tacos'

}

const handler =
get(target, prop, receiver
return Reflect.get(...arguments

const proxy = new Proxy(dinner, handler
console.log(proxy. meal

https://qgithere.com/doc/vue3.pdf Page 94 of 129

https://githere.com/doc/vue.pdf

Vue 3

// tacos

We mentioned before that in order to have an API that updates a final value when something
changes, we’re going to have to set new values when something changes. We do this in the

handler, in a function called T rack, where we pass inthe target and key.
const dinner =
meal: 'tacos'

}

const handler =
get(target, prop. receiver
track(target, prop
return Reflect.get(...arguments

const proxy = new Proxy(dinner, handler
console.log(proxy. meal

// tacos

Finally, we also set new values when something changes. For this, we’re going to set the changes
on our new proxy, by triggering those changes:

const dinner =
meal: 'tacos'

}

const handler =
get(target, prop. receiver
track(target, prop
return Reflect.get(...arguments

set(target, key, value, receiver
trigger(target. key
return Reflect.set(...arguments

const proxy = new Proxy(dinner, handler
console.log(proxy. meal

// tacos

Remember this list from a few paragraphs ago? Now we have some answers to how Vue handles
these changes:

+ Detect-whenthere’s-a-change-in-one-of the-values: we no longer have to do this, as Proxies

allow us to intercept it
* Track the function that changes it: We do this in a getter within the proxy, called ef fect
« Trigger the function so it can update the final value: We do in a setter within the proxy,
called trigger

The proxied object is invisible to the user, but under the hood they enable Vue to perform
dependency-tracking and change-notification when properties are accessed or modified. As of

https://qgithere.com/doc/vue3.pdf Page 95 of 129

https://githere.com/doc/vue.pdf

Vue 3

Vue 3, our reactivity is now available in a separate package. One caveat is that browser consoles
format differently when converted data objects are logged, so you may want to install vue-
devtools for a more inspection-friendly interface.

#Proxied Objects
Vue internally tracks all objects that have been made reactive, so it always returns the same proxy
for the same object.

When a nested object is accessed from a reactive proxy, that object is also converted into a proxy
before being returned:

const handler =
get(target, prop, receiver

track(target, prop

const value = Reflect.get(...arguments

if (isObject(value
return reactive(value
else
return value

/...
}
#Proxy vs. original identity

The use of Proxy does introduce a new caveat to be aware with: the proxied object is not equal to
the original object in terms of identity comparison (===). For example:

const obj =

const wrapped = new Proxy(obj, handlers

console.log(obj === wrapped) // false
The original and the wrapped version will behave the same in most cases, but be aware that they

will fail operations that rely on strong identity comparisons, suchas . filte r()or. map ().
This caveat is unlikely to come up when using the options API, because all reactive state is

accessed from Th1S and guaranteed to already be proxies.

However, when using the composition API to explicitly create reactive objects, the best practice is
to never hold a reference to the original raw object and only work with the reactive version:

const obj = reactive
count: O
// no reference to original

#Watchers

Every component instance has a corresponding watcher instance, which records any properties
"touched" during the component’s render as dependencies. Later on when a dependency’s setter
is triggered, it notifies the watcher, which in turn causes the component to re-render.

When you pass an object to a component instance as data, Vue converts it to a proxy. This proxy
enables Vue to perform dependency-tracking and change-notification when properties are
accessed or modified. Each property is considered a dependency.

After the first render, a component would have tracked a list of dependencies — the properties it
accessed during the render. Conversely, the component becomes a subscriber to each of these
properties. When a proxy intercepts a set operation, the property will notify all of its subscribed
components to re-render.

https://qgithere.com/doc/vue3.pdf Page 96 of 129

https://github.com/vuejs/vue-next/tree/master/packages/reactivity
https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://v3.vuejs.org/guide/reactivity.html#proxied-objects
https://v3.vuejs.org/guide/reactivity.html#proxy-vs-original-identity
https://v3.vuejs.org/guide/reactivity.html#watchers
https://githere.com/doc/vue.pdf

Vue 3

Reactivity Fundamentals
#Declaring Reactive State

To create a reactive state from a JavaScript object, we can use a react ive method:
import { reactive } from 'vue'

// reactive state
const state = reactive
count: 0

)

reactive is the equivalent of the Vue.observable () APIin Vue 2.x, renamed to avoid
confusion with RxJS observables. Here, the returned state is a reactive object. The reactive
conversion is "deep" - it affects all nested properties of the passed object.

The essential use case for reactive state in Vue is that we can use it during render. Thanks to
dependency tracking, the view automatically updates when reactive state changes.

This is the very essence of Vue's reactivity system. When you return an object from data ()ina
component, it is internally made reactive by reactive (). The template is compiled into
a render function that makes use of these reactive properties.

You can learn more about reactive in the Basic Reactivity API's section

#Creating Standalone Reactive Values as refs

Imagine the case where we have a standalone primitive value (for example, a string) and we want
to make it reactive. Of course, we could make an object with a single property equal to our string,
and pass it to reactive. Vue has a method that will do the same for us - it's a ref:

import { ref | from 'vue'

const count = ref(0

ref will return a reactive and mutable object that serves as a reactive reference to the internal
value it is holding - that's where the name comes from. This object contains the only one property
named vVa Lue:

import | ref } from 'vue'

const count = ref(0
console.log(count.value) // 0

count.value++
console.log(count.value) // 1
#Ref Unwrapping
When a ref is returned as a property on the render context (the object returned from setup()) and
accessed in the template, it automatically unwraps to the inner value. There is no need to
append . Va Lue€ in the template:
template
div
span>{{ count span
button count ++">Increment count</button
div
template

https://qgithere.com/doc/vue3.pdf Page 97 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/reactivity-fundamentals.html#declaring-reactive-state
https://v3.vuejs.org/guide/render-function.html
https://v3.vuejs.org/api/basic-reactivity.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html#creating-standalone-reactive-values-as-refs
https://v3.vuejs.org/guide/reactivity-fundamentals.html#ref-unwrapping
https://v3.vuejs.org/guide/composition-api-setup.html

Vue 3

script
import { ref | from 'vue'
export default
setup
const count = ref(0
return
count

script
#Access in Reactive Objects

When a ref is accessed or mutated as a property of a reactive object, it automatically unwraps
to the inner value so it behaves like a normal property:

const count = ref(0
const state = reactive
count

)

console.log(state.count) // 0

state.count = 1

console.log(count.value) // 1

If a new ref is assigned to a property linked to an existing ref, it will replace the old ref:
const otherCount = ref(2

state.count = otherCount
console.log(state.count) // 2
console.log(count.value) // 1

Ref unwrapping only happens when nested inside a reactive Obj eCt. There is no unwrapping
performed when the ref is accessed from an A ray or a native collection type like Map:
const books = reactive(|ref('Vue 3 Guide'

// need .value here

console.log(books|0].value

const map = reactive(new Map(||'count’, ref(O
// need .value here
console.log(map.get('count').value

#Destructuring Reactive State

When we want to use a few properties of the large reactive object, it could be tempting to
use ES6 destructuring to get properties we want:

import { reactive } from 'vue'

const book = reactive
author: 'Vue Team'
year: '2020'
title: 'Vue 3 Guide'

https://qgithere.com/doc/vue3.pdf Page 98 of 129

https://v3.vuejs.org/guide/reactivity-fundamentals.html#access-in-reactive-objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://v3.vuejs.org/guide/reactivity-fundamentals.html#destructuring-reactive-state
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://githere.com/doc/vue.pdf

Vue 3

description: '"You are reading this book right now ;)'
price: 'free'

)

let { author, title | = book

Unfortunately, with such a destructuring the reactivity for both properties would be lost. For such
a case, we need to convert our reactive object to a set of refs. These refs will retain the reactive
connection to the source object:

import { reactive, toRefs | from 'vue'

const book = reactive
author: '"Vue Team'
year: '2020'
title: 'Vue 3 Guide'
description: '"You are reading this book right now ;)'
price: 'free'

)

let { author, title | = toRefs(book

title.value = 'Vue 3 Detailed Guide' // we need to use .value as title is a ref now
console.log(book title) // 'Vue 3 Detailed Guide'

You can learn more about e TS in the Refs AP| section
#Prevent Mutating Reactive Objects with readonly

Sometimes we want to track changes of the reactive object (ref or reactive) but we also
want prevent changing it from a certain place of the application. For example, when we have

a provided reactive object, we want to prevent mutating it where it's injected. To do so, we can
create a readonly proxy to the original object:

import { reactive, readonly } from 'vue'
const original = reactive({ count: O
const copy = readonly(original

// mutating original will trigger watchers relying on the copy
original count++

// mutating the copy will fail and result in a warning
copy.count++ // warning: "Set operation on key 'count’ failed: target is readonly."

https://qgithere.com/doc/vue3.pdf Page 99 of 129

https://v3.vuejs.org/api/refs-api.html#ref
https://v3.vuejs.org/guide/reactivity-fundamentals.html#prevent-mutating-reactive-objects-with-readonly
https://v3.vuejs.org/guide/component-provide-inject.html
https://githere.com/doc/vue.pdf

Vue 3
Computed and Watch

This section uses single-file component syntax for code examples
#Computed values

Sometimes we need state that depends on other state - in Vue this is handled with
component computed properties. To directly create a computed value, we can use

the Computed method: it takes a getter function and returns an immutable reactive ref object
for the returned value from the getter.

const count = ref(1
const plusOne = computed|(() => count.value + 1

console.log(plusOne.value) // 2

plusOne.value++ // error

Alternatively, it can take an object with €1t and S€T functions to create a writable ref object.
const count = ref(1
const plusOne = computed
get: () => count.value + 1
set: val =>
count.value = val - 1

)

plusOne.value = 1
console.log(count.value) // 0

#watchEffect

To apply and automatically re-apply a side effect based on reactive state, we can use

the wat chEffect method. It runs a function immediately while reactively tracking its
dependencies and re-runs it whenever the dependencies are changed.

const count = ref(0

watchEffect(() => console.log(count.value
// ->1logs 0

setTimeout(() =>
count.value++
// ->logs 1
100

#Stopping the Watcher

When watchEffect is called during a component's setup() function or lifecycle hooks, the
watcher is linked to the component's lifecycle and will be automatically stopped when the
component is unmounted.

In other cases, it returns a stop handle which can be called to explicitly stop the watcher:
const stop = watchEffect(() =>

VA
Y

https://qgithere.com/doc/vue3.pdf Page 100 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#computed-values
https://v3.vuejs.org/guide/computed.html#computed-properties
https://v3.vuejs.org/guide/reactivity-fundamentals.html#creating-standalone-reactive-values-as-refs
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watcheffect
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#stopping-the-watcher
https://v3.vuejs.org/guide/composition-api-setup.html
https://v3.vuejs.org/guide/composition-api-lifecycle-hooks.html

Vue 3

// later
stop

#Side Effect Invalidation
Sometimes the watched effect function will perform asynchronous side effects that need to be
cleaned up when it is invalidated (i.e state changed before the effects can be completed). The

effect function receives an onInva Ll idate function that can be used to register an
invalidation callback. This invalidation callback is called when:

+ the effect is about to re-run

* the watcher is stopped (i.e. when the component is unmounted if watchEf fect is used
inside setup () or lifecycle hooks)
watchEffect(onlnvalidate =>

const token = performAsyncOperation(id.value

onlnvalidate(() =>
// id has changed or watcher is stopped.
// invalidate previously pending async operation
token.cancel

)

We are registering the invalidation callback via a passed-in function instead of returning it from the
callback because the return value is important for async error handling. It is very common for the
effect function to be an async function when performing data fetching:

const data = ref(null

watchEffect(async onlnvalidate =>
onlnvalidate(() => {...}) // we register cleanup function before Promise resolves
data.value = await fetchData(props.id

An async function implicitly returns a Promise, but the cleanup function needs to be registered
immediately before the Promise resolves. In addition, Vue relies on the returned Promise to
automatically handle potential errors in the Promise chain.

#Effect Flush Timing
Vue's reactivity system buffers invalidated effects and flushes them asynchronously to avoid
unnecessary duplicate invocation when there are many state mutations happening in the same
"tick". Internally, a component's U pdate function is also a watched effect. When a user effect is
queued, it is by default invoked before all component update effects:

template

div>{{ count }}</div
template

script
export default
setup
const count = ref(0

watchEffect(() =>

console.log(count.value

return
https://qgithere.com/doc/vue3.pdf Page 101 of 129

https://v3.vuejs.org/guide/reactivity-computed-watchers.html#side-effect-invalidation
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#effect-flush-timing
https://githere.com/doc/vue.pdf

Vue 3

count

script

In this example:
« The count will be logged synchronously on initial run.
* When count is mutated, the callback will be called before the component has updated.
In cases where a watcher effect needs to be re-run after component updates, we can pass an
additional Opt10NS object with the T LuSh option (defaultis ‘pre’):
// fire after component updates so you can access the updated DOM
// Note: this will also defer the initial run of the effect until the
// component's first render is finished.
watchEffect
=>

/Lt

flush: 'post’

)

The T Lush option also accepts ' Sync ', which forces the effect to always trigger
synchronously. This is however inefficient and should be rarely needed.

#Watcher Debugging
The onTrack and onTrigger options can be used to debug a watcher's behavior.

e onTrack will be called when a reactive property or ref is tracked as a dependency.

* onTrigger will be called when the watcher callback is triggered by the mutation of a
dependency.
Both callbacks will receive a debugger event which contains information on the dependency in

question. It is recommended to place a debugge I statement in these callbacks to interactively
inspect the dependency:

watchEffect
=>
/* side effect */

onTrigger(e
debugger

)
onTrackand onTrigger only work in development mode.

#watch

https://qgithere.com/doc/vue3.pdf Page 102 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watcher-debugging
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watch

Vue 3

The wat ch API is the exact equivalent of the component watch property. wat ch requires
watching a specific data source and applies side effects in a separate callback function. It also is
lazy by default - i.e. the callback is only called when the watched source has changed.
* Compared to watchEffect, watcC h allows us to:
o Perform the side effect lazily;
o Be more specific about what state should trigger the watcher to re-run;
o Access both the previous and current value of the watched state.

#Watching a Single Source

A watcher data source can either be a getter function that returns a value, or directly a ref:
// watching a getter
const state = reactive({ count: 0
watch
=> state.count
count, prevCount) =>
/0

// directly watching a ref

const count = ref(0

watch(count, (count, prevCount) =>
Yy

})

#Watching Multiple Sources

A watcher can also watch multiple sources at the same time using an array:

watch([fooRef, barRef|, ([foo, bar|, [prevFoo, prevBar|) =>
Yy

Y

#Shared Behavior with watchEffect

watch shares behavior with wat chEf fect in terms of manual stoppage, side effect

invalidation (with onInvalidate passed to the callback as the 3rd argument instead), flush
timing and debugging.

https://qgithere.com/doc/vue3.pdf Page 103 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/computed.html#watchers
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watcheffect
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watching-a-single-source
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watching-multiple-sources
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#shared-behavior-with-watcheffect
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watcheffect
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#stopping-the-watcher
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#side-effect-invalidation
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#side-effect-invalidation
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#effect-flush-timing
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#effect-flush-timing
https://v3.vuejs.org/guide/reactivity-computed-watchers.html#watcher-debugging

Vue 3

Composition API
Introduction
#Why Composition API?

Note

Reaching this far in the documentation, you should already be familiar with both the basics of
Vue and creating components.

Creating Vue components allows us to extract repeatable parts of the interface coupled with its
functionality into reusable pieces of code. This alone can get our application pretty far in terms of
maintainability and flexibility. However, our collective experience has proved that this alone might
not be enough, especially when your application is getting really big — think several hundred
components. When dealing with such large applications, sharing and reusing code becomes
especially important.

Let’s imagine that in our app, we have a view to show a list of repositories of a certain user. On
top of that, we want to apply search and filter capabilities. Our component handling this view
could look like this:

// src/components/UserRepositories.vue

export default
components: | RepositoriesFilters, RepositoriesSortBy, RepositoriesList
props:
user:
type: String
required: true

data
return
repositories: [|, // 1
filters: { ...}, // 3

searchQuery: "' // 2

computed:

filteredRepositories () { ... }, // 3
repositoriesMatchingSearchQuery () | ... }. // 2
watch:

user: 'getUserRepositories' // 1

methods:
getUserRepositories
// using “this.user to fetch user repositories
/71
updateFilters () { ... }, // 3

mounted
this.getUserRepositories() // 1

https://qgithere.com/doc/vue3.pdf Page 104 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/composition-api-introduction.html#why-composition-api
https://v3.vuejs.org/guide/introduction.html
https://v3.vuejs.org/guide/introduction.html
https://v3.vuejs.org/guide/component-basics.html

Vue 3
}

This component has several responsibilities:
1. Getting repositories from a presumedly external API for that user name and refreshing it
whenever the user changes
2. Searching for repositories using a searchQue I"Y string
3. Filtering repositories using a T1 Lters object

Organizing logics with component's options (data, computed, methods, watch) works
in most cases. However, when our components get bigger, the list of logical concerns also grows.
This can lead to components that are hard to read and understand, especially for people who
didn't write them in the first place.

Example presenting a large component where its logical concerns are grouped by colors.

Such fragmentation is what makes it difficult to understand and maintain a complex component.
The separation of options obscures the underlying logical concerns. In addition, when working on
a single logical concern, we have to constantly "jump" around option blocks for the relevant code.

It would be much nicer if we could collocate code related to the same logical concern. And this is
exactly what the Composition API enables us to do.

#Basics of Composition API

Now that we know the why we can get to the how. To start working with the Composition APl we
first need a place where we can actually use it. In a Vue component, we call this place

the setup.

#setup Component Option

The new SeTUP component option is executed before the component is created, once
the PIrops are resolved, and serves as the entry point for composition API's.
WARNING

Because the component instance is not yet created when SETUD is executed, there is

no this inside a Setup option. This means, with the exception of Props, you won't be able
to access any properties declared in the component — local state, computed

properties or methods.

The Ssetup option should be a function that accepts Props and context which we will talk

about later. Additionally, everything that we return from S€t Up will be exposed to the rest of our
component (computed properties, methods, lifecycle hooks and so on) as well as to the
component's template.

Let’s add SETUP to our component:

// src/components/UserRepositories.vue

export default
components: | RepositoriesFilters, RepositoriesSortBy, RepositoriesList
props:
user:
type: String
required: true

setup(props
console.log(props) // { user: " }

return {} // anything returned here will be available for the rest of the component

https://qgithere.com/doc/vue3.pdf Page 105 of 129

https://v3.vuejs.org/guide/composition-api-introduction.html#basics-of-composition-api
https://v3.vuejs.org/guide/composition-api-introduction.html#setup-component-option
https://v3.vuejs.org/guide/composition-api-setup.html#arguments
https://githere.com/doc/vue.pdf

Vue 3

// the "rest" of the component
}
Now let’s start with extracting the first logical concern (marked as "1" in the original snippet).

Getting repositories from a presumedly external API for that user name and refreshing it
whenever the user changes

We will start with the most obvious parts:

« The list of repositories

« The function to update the list of repositories

+ Returning both the list and the function so they are accessible by other component options
// src/components/UserRepositories.vue ‘setup” function
import { fetchUserRepositories | from '@/api/repositories’

// inside our component
setup (props
let repositories =
const getUserRepositories = async () =>
repositories = await fetchUserRepositories(props.user

return
repositories
getUserRepositories // functions returned behave the same as methods

}

This is our starting point, except it's not working yet because our re€p0S itories variable is
not reactive. This means from a user's perspective, the repository list would remain empty. Let's
fix that!

#Reactive Variables with ref

In Vue 3.0 we can make any variable reactive anywhere with a new e f function, like this:
import { ref } from 'vue'

const counter = ref(0

ref takes the argument and returns it wrapped within an object with a Va Lue property, which
can then be used to access or mutate the value of the reactive variable:

import { ref } from 'vue'

const counter = ref(0

console.log(counter) // { value: 0 }
console.log(counter.value) // 0

counter.value++
console.log(counter.value) // 1

Wrapping values inside an object might seem unnecessary but is required to keep the behavior
unified across different data types in JavaScript. That’s because in JavaScript, primitive types

like Number or String are passed by value, not by reference:

https://qgithere.com/doc/vue3.pdf Page 106 of 129

https://v3.vuejs.org/guide/composition-api-introduction.html#reactive-variables-with-ref
https://githere.com/doc/vue.pdf

Vue 3

Having a wrapper object around any value allows us to safely pass it across our whole app
without worrying about losing its reactivity somewhere along the way.

Note

In other words, e creates a Reactive Reference to our value. The concept of working
with References will be used often throughout the Composition API.

Back to our example, let's create a reactive rep0Ss1itories variable:

// src/components/UserRepositories.vue ‘setup’ function

import | fetchUserRepositories |} from '@/api/repositories’

import { ref | from 'vue'

// in our component
setup (props
const repositories = ref
const getUserRepositories = async () =>
repositories.value = await fetchUserRepositories(props.user

return
repositories
getUserRepositories

}

Done! Now whenever we call getUserRepositories, repositories will be

mutated and the view will be updated to reflect the change. Our component should now look like
this:

// src/components/UserRepositories.vue
import { fetchUserRepositories |} from '@/api/repositories'
import { ref |} from 'vue'

export default
components: | RepositoriesFilters, RepositoriesSortBy, RepositoriesList
props:
user:
type: String
required: true

setup (props
const repositories = ref
const getUserRepositories = async () =>
repositories.value = await fetchUserRepositories(props.user

return
repositories
getUserRepositories

https://qgithere.com/doc/vue3.pdf Page 107 of 129

https://githere.com/doc/vue.pdf

Vue 3

data
return
filters: { ...}, // 3
searchQuery: "' // 2

computed:

fiteredRepositories () { ... |, // 3
repositoriesMatchingSearchQuery () { ... }. // 2
watch:

user: 'getUserRepositories' // 1

methods:
updateFilters () { ...}, // 3

mounted
this.getUserRepositories() // 1

}

We have moved several pieces of our first logical concern into the SETUP method, nicely put
close to each other. What's left is calling getUserRepositories inthe mounted hook
and setting up a watcher to do that whenever the US€ I prop changes.

We will start with the lifecycle hook.

#Lifecycle Hook Registration Inside setup

To make Composition API feature-complete compared to Options API, we also need a way to

register lifecycle hooks inside SETUP. This is possible thanks to several new functions exported
from Vue. Lifecycle hooks on composition APl have the same name as for Options API but are

prefixed with ON: i.e. mounted would look like onMounted.

These functions accept a callback that will be executed when the hook is called by the
component.

Let’s add it to our SETUP function:

// src/components/UserRepositories.vue ‘setup’ function

import | fetchUserRepositories |} from '@/api/repositories’

import { ref, onMounted } from 'vue'

// in our component
setup (props
const repositories = ref
const getUserRepositories = async () =>
repositories.value = await fetchUserRepositories(props.user

onMounted(getUserRepositories) // on ‘'mounted’ call ‘getUserRepositories’

return
repositories

https://qgithere.com/doc/vue3.pdf Page 108 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/composition-api-introduction.html#lifecycle-hook-registration-inside-setup

Vue 3

getUserRepositories

}

Now we need to react to the changes made to the USETI" prop. For that we will use the
standalone wat ch function.

#Reacting to Changes with watch

Just like how we set up a watcher on the US€EI" property inside our component using

the wat ch option, we can do the same using the wat ch function imported from Vue. It
accepts 3 arguments:

+ A Reactive Reference or getter function that we want to watch
+ Acallback
+ Optional configuration options

Here’s a quick look at how it works.

import { ref, watch | from 'vue'

const counter = ref(0
watch(counter, (newValue, oldValue) =>
console.log('The new counter value is: ' + counter.value

Y
Whenever counter is modified, for example counter.value = 5, the watch will trigger
and execute the callback (second argument) which in this case willlog ' The new counter
value 1s: 5" into our console.
Below is the Options API equivalent:
export default
data
return
counter: 0

watch:
counter(newValue, oldValue
console.log('The new counter value is: ' + this.counter

}

For more details on wat ch, refer to our in-depth guide.
Let’s now apply it to our example:

// src/components/UserRepositories.vue ‘setup” function
import { fetchUserRepositories |} from '@/api/repositories’
import { ref, onMounted, watch, toRefs } from 'vue'

// in our component

setup (props
// using ‘toRefs’ to create a Reactive Reference to the ‘user property of props
const { user } = toRefs(props

const repositories = ref
https://qgithere.com/doc/vue3.pdf Page 109 of 129

https://v3.vuejs.org/guide/composition-api-introduction.html#reacting-to-changes-with-watch
https://v3.vuejs.org/guide/composition-api-introduction.html
https://githere.com/doc/vue.pdf

Vue 3

const getUserRepositories = async () =>
// update “props.user to ‘user.value' to access the Reference value
repositories.value = await fetchUserRepositories(user.value

onMounted(getUserRepositories

// set a watcher on the Reactive Reference to user prop
watch(user. getUserRepositories

return
repositories
getUserRepositories

}

You probably have noticed the use of tORe TS at the top of our S€TUP. This is to ensure our
watcher will react to changes made to the USE I prop.

With those changes in place, we've just moved the whole first logical concern into a single place.
We can now do the same with the second concern — filtering based on SealC hQue "y, this
time with a computed property.

#Standalone computed properties

Similar to ref and watch, computed properties can also be created outside of a Vue

component with the Computed function imported from Vue. Let’s get back to our counter
example:

import | ref, computed | from 'vue'

const counter = ref(0
const twiceTheCounter = computed(() => counter.value * 2

counter.value++
console.log(counter.value) // 1
console.log(twiceTheCounter.value) // 2

Here, the Computed function returns a read-only Reactive Reference to the output of the
getter-like callback passed as the first argument to Computed. In order to access the value of
the newly-created computed variable, we need to use the . Va LU€ property just like with ref.

Let’s move our search functionality into Setup:

// src/components/UserRepositories.vue ‘setup’ function
import { fetchUserRepositories | from '@/api/repositories'
import { ref, onMounted, watch, toRefs, computed } from 'vue'

// in our component

setup (props
// using ‘toRefs’ to create a Reactive Reference to the ‘user property of props
const { user } = toRefs(props

const repositories = ref
const getUserRepositories = async () =>
https://qgithere.com/doc/vue3.pdf Page 110 of 129

https://v3.vuejs.org/guide/composition-api-introduction.html#standalone-computed-properties
https://githere.com/doc/vue.pdf

Vue 3

// update ‘props.user’ to ‘user.value to access the Reference value
repositories.value = await fetchUserRepositories(user.value

onMounted(getUserRepositories

// set a watcher on the Reactive Reference to user prop
watch(user, getUserRepositories

const searchQuery = ref("
const repositoriesMatchingSearchQuery = computed(() =>
return repositories.value filter
repository => repository.name.includes(searchQuery.value

return
repositories
getUserRepositories
searchQuery
repositoriesMatchingSearchQuery

}

We could do the same for other logical concerns but you might be already asking the question -

Isn’t this just moving the code to the S€ TUP option and making it extremely big? Well, that’s
true. That’s why before moving on with the other responsibilities, we will first extract the above
code into a standalone composition function. Let's start with

creating useUserRepositories:
// src/composables/useUserRepositories.js

import { fetchUserRepositories | from '@/api/repositories’
import | ref, onMounted, watch } from 'vue'

export default function useUserRepositories(user
const repositories = ref
const getUserRepositories = async () =>
repositories.value = await fetchUserRepositories(user.value

onMounted(getUserRepositories
watch(user. getUserRepositories

return
repositories
getUserRepositories

}

And then the searching functionality:
// src/composables/useRepositoryNameSearch.js
https://qgithere.com/doc/vue3.pdf Page 111 of 129

https://githere.com/doc/vue.pdf

Vue 3

import { ref, computed | from 'vue'

export default function useRepositoryNameSearch(repositories
const searchQuery = ref("
const repositoriesMatchingSearchQuery = computed(() =>
return repositories.value filter(repository =>
return repository.name.includes(searchQuery.value

return
searchQuery
repositoriesMatchingSearchQuery

}

Now having those two functionalities in separate files, we can start using them in our component.
Here’s how this can be done:

// src/components/UserRepositories.vue
import useUserRepositories from '@/composables/useUserRepositories’

import useRepositoryNameSearch from '@/composables/useRepositoryNameSearch'
import { toRefs } from 'vue'

export default
components: { RepositoriesFilters, RepositoriesSortBy, RepositoriesList
props:
user:
type: String
required: true

setup (props
const { user } = toRefs(props

const { repositories, getUserRepositories | = useUserRepositories(user

const
searchQuery
repositoriesMatchingSearchQuery
= useRepositoryNameSearch(repositories

return
// Since we don’t really care about the unfiltered repositories
// we can expose the filtered results under the ‘repositories’ name
repositories: repositoriesMatchingSearchQuery
getUserRepositories
searchQuery.

https://qgithere.com/doc/vue3.pdf Page 112 of 129

https://githere.com/doc/vue.pdf

Vue 3

data
return
filters: { ...}, // 3

computed:
filteredRepositories () | ... }, // 3

methods:
updateFilters () { ... }, // 3

}

At this point you probably already know the drill, so let’s skip to the end and migrate the leftover
filtering functionality. We don’t really need to get into the implementation details as it’s not the

point of this guide.

// src/components/UserRepositories.vue

import { toRefs } from 'vue'

import useUserRepositories from '@/composables/useUserRepositories’

import useRepositoryNameSearch from '@/composables/useRepositoryNameSearch'

import useRepositoryFilters from '@/composables/useRepositoryFilters'

export default
components: { RepositoriesFilters, RepositoriesSortBy, RepositoriesList
props:
user:
type: String
required: true

setup(props
const { user |} = toRefs(props

const | repositories, getUserRepositories | = useUserRepositories(user

const
searchQuery.
repositoriesMatchingSearchQuery
= useRepositoryNameSearch(repositories

const
filters
updateFilters
filteredRepositories
= useRepositoryFilters(repositoriesMatchingSearchQuery

return
// Since we don’t really care about the unfiltered repositories
// we can expose the end results under the ‘repositories’ name
repositories: filteredRepositories

https://qithere.com/doc/vue3.pdf

Page 113 of 129

https://githere.com/doc/vue.pdf

Vue 3

getUserRepositories
searchQuery.

filters

updateFilters

}

And we are done!

Keep in mind that we've only scratched the surface of Composition APl and what it allows us to
do. To learn more about it, refer to the in-depth guide.

Setup

This section uses single-file component syntax for code examples
This guide assumes that you have already read the Composition API Introduction and Reactivity
Fundamentals. Read that first if you are new to Composition API.

#Arguments

When using the SetuUp function, it will take two arguments:
1. props
2. context

Let's dive deeper into how each argument can be used.

#Props

The first argument in the SETUP function is the Props argument. Just as you would expect in a

standard component, PIrOpPS inside of a S€TUP function are reactive and will be updated when
new props are passed in.

// MyBook.vue

export default

props:
title: String

setup(props
console.log(props.title

}
WARNING

However, because PI'OPS are reactive, you cannot use ES6 destructuring because it will remove
props reactivity.

If you need to destructure your props, you can do this by utilizing the toRefs inside of

the setup function:

// MyBook.vue
import { toRefs } from 'vue'

setup(props

https://qgithere.com/doc/vue3.pdf Page 114 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/composition-api-introduction.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html
https://v3.vuejs.org/guide/composition-api-setup.html#arguments
https://v3.vuejs.org/guide/composition-api-setup.html#props
https://v3.vuejs.org/guide/reactivity-fundamentals.html#destructuring-reactive-state

Vue 3

const { title } = toRefs(props

console log(title.value
}
If t it Le is an optional prop, it could be missing from Props. In that case, toRefs won't
create a ref for t 1t Le. Instead you'd need to use toRef:
// MyBook.vue

import { toRef } from 'vue'

setup(props
const title = toRef(props, 'title’

console.log(title.value

}
#Context

The second argument passed to the SEtUp function is the context. The contextisa
normal JavaScript object that exposes three component properties:

// MyBook.vue

export default
setup(props, context
// Attributes (Non-reactive object)
console.log(context.attrs

// Slots (Non-reactive object)
console.log(context.slots

// Emit Events (Method)
console.log(context.emit

}
The context object is a normal JavaScript object, i.e., it is not reactive, this means you can
safely use ES6 destructuring on context.
// MyBook.vue
export default
setup(props, { attrs, slots, emit

}

attrsand s lots are stateful objects that are always updated when the component itself is
updated. This means you should avoid destructuring them and always reference properties

asattrs.xorslots. x. Also note that
unlike props, attrs and s Lots are not reactive. If you intend to apply side effects based
onattrsorslots changes, you should do so inside an onUpdated lifecycle hook.

#Accessing Component Properties
https://qgithere.com/doc/vue3.pdf Page 115 of 129

https://v3.vuejs.org/guide/composition-api-setup.html#context
https://v3.vuejs.org/guide/composition-api-setup.html#accessing-component-properties
https://githere.com/doc/vue.pdf

Vue 3

When setup is executed, the component instance has not been created yet. As a result, you
will only be able to access the following properties:

° props
e attrs
e slots
e emit

In other words, you will not have access to the following component options:
* data
e computed
e methods

#Usage with Templates

If Setup returns an object, the properties on the object can be accessed in the component's
template, as well as the properties of the pIrops passed into Setup:
<!-- MyBook.vue -->
template
div>{{ collectionName }}: {{ readersNumber book title div
template

script
import { ref, reactive } from 'vue'

export default

props:
collectionName: String

setup(props
const readersNumber = ref(0
const book = reactive(] title: 'Vue 3 Guide'

// expose to template

return
readersNumber,
book

script
Note that refs returned from SetUp are automatically unwrapped when accessed in the template
so you shouldn't use . Va LUE in templates.

#Usage with Render Functions

setup can also return a render function which can directly make use of the reactive state
declared in the same scope:

// MyBook.vue

import { h, ref, reactive } from 'vue'

https://qgithere.com/doc/vue3.pdf Page 116 of 129

https://v3.vuejs.org/guide/composition-api-setup.html#usage-with-templates
https://v3.vuejs.org/api/refs-api.html#ref
https://v3.vuejs.org/guide/reactivity-fundamentals.html#ref-unwrapping
https://v3.vuejs.org/guide/composition-api-setup.html#usage-with-render-functions
https://githere.com/doc/vue.pdf

Vue 3

export default
setup
const readersNumber = ref(0
const book = reactive({ title: 'Vue 3 Guide'
// Please note that we need to explicitly expose ref value here
return () => h('div', [readersNumber.value, book title

}
#Usage of this

Inside setup (), this won't be a reference to the current active instance Since setu p ()is
called before other component options are resolved, th1s inside setu p () will behave quite
differently from thi1s in other options. This might cause confusions when

using setup () along other Options API.

Lifecycle Hooks

This guide assumes that you have already read the Composition API Introduction and Reactivity
Fundamentals. Read that first if you are new to Composition API.

Watch a free video about Lifecycle Hooks on Vue Mastery
You can access a component's lifecycle hook by prefixing the lifecycle hook with "on".
The following table contains how the lifecycle hooks are invoked inside of setup():

Options API Hook inside setup
beforeCreate Not needed+
created Not needed*
beforeMount onBeforeMount
mounted onMounted
beforeUpdate onBeforeUpdate
updated onUpdated
beforeUnmount onBeforeUnmount
unmounted onUnmounted
errorCaptured onErrorCaptured
renderTracked onRenderTracked
renderTriggered onRenderTriggered

https://qgithere.com/doc/vue3.pdf Page 117 of 129

https://v3.vuejs.org/guide/composition-api-setup.html#usage-of-this
https://v3.vuejs.org/guide/composition-api-introduction.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html
https://www.vuemastery.com/courses/vue-3-essentials/lifecycle-hooks
https://v3.vuejs.org/guide/composition-api-setup.html
https://githere.com/doc/vue.pdf

Vue 3

TIP

Because Setup is run around the beforeCreate and created lifecycle hooks, you do
not need to explicitly define them. In other words, any code that would be written inside those
hooks should be written directly in the SetUp function.

These functions accept a callback that will be executed when the hook is called by the
component:

// MyBook.vue

export default
setup
// mounted
onMounted(() =>
console.log('Component is mounted!'

Provide / Inject

This guide assumes that you have already read Provide / Inject, Composition API Introduction,
and Reactivity Fundamentals.

We can use provide / inject with the Composition API as well. Both can only be called
during setup() with a current active instance.

#Scenario Background

Let's assume that we want to rewrite the following code, which contains a MyMap component
that provides a MyMa rker component with the user's location, using the Composition API.
<!-- src/components/MyMap.vue -->
template
MyMarker
template

script
import MyMarker from './MyMarker.vue'

export default
components:
MyMarker

provide:
location: 'North Pole'
geolocation:
longitude: 90
latitude: 135

}
https://qgithere.com/doc/vue3.pdf Page 118 of 129

https://v3.vuejs.org/guide/component-provide-inject.html
https://v3.vuejs.org/guide/composition-api-introduction.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html
https://v3.vuejs.org/guide/component-provide-inject.html
https://v3.vuejs.org/guide/composition-api-setup.html
https://v3.vuejs.org/guide/composition-api-provide-inject.html#scenario-background
https://githere.com/doc/vue.pdf

Vue 3

script

<!-- src/components/MyMarker.vue -->
script

export default
inject: ['location’, 'geolocation’

}

script

#Using Provide

When using providein setup (), we start by explicitly importing the method from VUE.
This allows us to define each property with its own invocation of pIrov ide.

The prov ide function allows you to define the property through two parameters:

1. The property's name (<St ring> type)
2. The property's value

Using our MyMap component, our provided values can be refactored as the following:
<!-- src/components/MyMap.vue -->
template
MyMarker
template

script
import { provide } from 'vue'
import MyMarker from './MyMarker.vue

export default
components:
MyMarker

setup
provide('location’, 'North Pole'
provide('geolocation'
longitude: 90
latitude: 135

}

script
#Using Inject
When using injectin setup(), we also need to explicitly import it from VUE. Once we do
so, this allows us to invoke it to define how we want to expose it to our component.

The 1nject function takes two parameters:
1. The name of the property to inject
2. A default value (Optional)

Using our MyMa rker component, we can refactor it with the following code:

https://qgithere.com/doc/vue3.pdf Page 119 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/composition-api-provide-inject.html#using-provide
https://v3.vuejs.org/guide/composition-api-provide-inject.html#using-inject

Vue 3

<!-- src/components/MyMarker.vue -->
script
import { inject } from 'vue'

export default
setup
const userLocation = inject('location’, 'The Universe'
const userGeolocation = inject('geolocation’

return
userLocation
userGeolocation

}

script
#Reactivity
#Adding Reactivity

To add reactivity between provided and injected values, we can use a ref or reactive when

providing a value.

Using our MyMap component, our code can be updated as follows:

<!-- src/components/MyMap.vue -->
template
MyMarker
template

script
import { provide, reactive, ref } from 'vue'
import MyMarker from './MyMarker vue

export default
components:
MyMarker

setup
const location = ref('North Pole'
const geolocation = reactive
longitude: 90
latitude: 135

provide('location’, location
provide('geolocation’, geolocation

}

script

https://qithere.com/doc/vue3.pdf

Page 120 of 129

https://v3.vuejs.org/guide/composition-api-provide-inject.html#reactivity
https://v3.vuejs.org/guide/composition-api-provide-inject.html#adding-reactivity
https://v3.vuejs.org/guide/reactivity-fundamentals.html#creating-standalone-reactive-values-as-refs
https://v3.vuejs.org/guide/reactivity-fundamentals.html#declaring-reactive-state
https://githere.com/doc/vue.pdf

Vue 3

Now, if anything changes in either property, the MyMa rker component will automatically be
updated as well!

#Mutating Reactive Properties
When using reactive provide / inject values, it is recommended to keep any mutations to reactive
properties inside of the provider whenever possible.
For example, in the event we needed to change the user's location, we would ideally do this
inside of our MyMap component.
<!-- src/components/MyMap.vue -->

template

MyMarker
template

script
import { provide, reactive, ref } from 'vue'
import MyMarker from './MyMarker vue

export default
components:
MyMarker

setup
const location = ref('North Pole'
const geolocation = reactive
longitude: 90
latitude: 135

provide('location', location
provide('geolocation’, geolocation

return
location

methods:
updatelocation
this.location = 'South Pole'

}
script

However, there are times where we need to update the data inside of the component where the
data is injected. In this scenario, we recommend providing a method that is responsible for
mutating the reactive property.

<!-- src/components/MyMap.vue -->
template
MyMarker
template

https://qgithere.com/doc/vue3.pdf Page 121 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/composition-api-provide-inject.html#mutating-reactive-properties

Vue 3

script
import { provide, reactive, ref } from 'vue'
import MyMarker from './MyMarker.vue

export default
components:
MyMarker

setup
const location = ref('North Pole'
const geolocation = reactive
longitude: 90
latitude: 135

const updateLocation = () =>
location.value = 'South Pole'

provide('location’, location
provide('geolocation', geolocation
provide('updatelLocation', updatelLocation

}

script

<!-- src/components/MyMarker.vue -->
script
import { inject } from 'vue'

export default
setup
const userlLocation = inject('location’, "The Universe'
const userGeolocation = inject('geolocation’
const updateUserLocation = inject('updateLocation'

return
userlLocation
userGeolocation
updateUserLocation

}

script

Finally, we recommend using readon ly on provided property if you want to ensure that the
data passed through prov ide cannot be mutated by the injected component.
<!-- src/components/MyMap.vue -->

https://qgithere.com/doc/vue3.pdf Page 122 of 129

https://githere.com/doc/vue.pdf

Vue 3

template
MyMarker
template

script
import { provide, reactive, readonly, ref |} from 'vue'
import MyMarker from './MyMarker.vue

export default
components:
MyMarker

setup
const location = ref('North Pole'
const geolocation = reactive
longitude: 90
latitude: 135

const updatelLocation = () =>
location.value = 'South Pole'

provide('location’, readonly(location
provide('geolocation’, readonly(geolocation
provide('updatelLocation’, updatelLocation

}

script

Template Refs

This section uses single-file component syntax for code examples

This guide assumes that you have already read the Composition API Introduction and Reactivity
Fundamentals. Read that first if you are new to Composition API.

When using the Composition API, the concept of reactive refs and template refs are unified. In
order to obtain a reference to an in-template element or component instance, we can declare a ref
as usual and return it from setup():

template
div ref="root">This is a root element</div
template

script
import { ref, onMounted } from 'vue'

export default
setup

https://qgithere.com/doc/vue3.pdf Page 123 of 129

https://v3.vuejs.org/guide/single-file-component.html
https://v3.vuejs.org/guide/composition-api-introduction.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html
https://v3.vuejs.org/guide/reactivity-fundamentals.html#creating-standalone-reactive-values-as-refs
https://v3.vuejs.org/guide/component-template-refs.html
https://v3.vuejs.org/guide/composition-api-setup.html
https://githere.com/doc/vue.pdf

Vue 3

const root = ref(null

onMounted(() =>
// the DOM element will be assigned to the ref after initial render
console.log(root.value) // <div>This is a root element</div>

return
root

script
Here we are exposing OO0t on the render context and binding it to the div as its ref

via ref="root". In the Virtual DOM patching algorithm, if a VNode's e f key corresponds to
a ref on the render context, the VNode's corresponding element or component instance will be
assigned to the value of that ref. This is performed during the Virtual DOM mount / patch process,
so template refs will only get assigned values after the initial render.

Refs used as templates refs behave just like any other refs: they are reactive and can be passed
into (or returned from) composition functions.

#Usage with JSX

export default
setup
const root = ref(null

return () =>
h('div'
ref: root

// with JSX
return () => <div ref={root} />

}
#Usage inside v—for

Composition API template refs do not have special handling when used inside V—=T0 . Instead,
use function refs to perform custom handling:

template
div v-for="(item, i) in list" :ref="el => { if (el) divs[i] = el }
{item }}
div

template

script
import { ref, reactive, onBeforeUpdate | from 'vue'

export default

https://qgithere.com/doc/vue3.pdf Page 124 of 129

https://v3.vuejs.org/guide/composition-api-template-refs.html#usage-with-jsx
https://v3.vuejs.org/guide/composition-api-template-refs.html#usage-inside-v-for
https://githere.com/doc/vue.pdf

Vue 3

setup
const list = reactive([1, 2, 3
const divs = ref

// make sure to reset the refs before each update
onBeforeUpdate(() =>
divs.value =

return
list
divs

script

Rendering Mechanisms and Optimizations

This page is not required reading in order to learn how to use Vue well, but it provides more
information, should you be curious how rendering works under the hood.

#Virtual DOM

Now that we know how watchers are updating the components, you might ask how those
changes eventually make it to the DOM! Perhaps you’ve heard of the Virtual DOM before, many
frameworks including Vue use this paradigm to make sure our interfaces reflect the changes we’re
updating in JavaScript effectively

Here is the DOM

We make a copy in JavaScript called the Virtual DOM

We do this because touching the DOM with JavaScript is computationally expensive.
While performing updates in JavaScript is cheap,

Finding the required DOM nodes and updating them with JS is expensive

So we batch calls, and change the DOM all at once.

The virtual DOM in is a lightweight JavaScript object, created by this render function
It takes three arguments: the element, an object with data, props, attrs and more, and an array
The array is where we pass in the children, which have all these arguments too
Here’s the text in the div

And it’s child, the ul

Now in turn it’s children, the lis

If we need to update the list items, we do so in javascript

And only then do we update the actual DOM

The Virtual DOM allows us to make performant update our Uls!

The Virtual DOM in is a lightweight JavaScript object, created by a render function. It takes three
arguments: the element, an object with data, props, attrs and more, and an array. The array is
where we pass in the children, which have all these arguments too, and then they can have
children and so on, until we build a full tree of elements.

If we need to update the list items, we do so in JavaScript, using the reactivity we mentioned
earlier. We then make all the changes to the JavaScript copy, the virtual DOM, and perform a diff
between this and the actual DOM. Only then do we make our updates to just what has changed.
The Virtual DOM allows us to make performant updates to our Uls!

https://qgithere.com/doc/vue3.pdf Page 125 of 129

https://v3.vuejs.org/guide/optimizations.html#virtual-dom
https://githere.com/doc/vue.pdf

Vue 3

Change Detection Caveats in Vue 2

This page applies only to Vue 2.x and below, and assumes you've already read the Reactivity
Section. Please read that section first.

Due to limitations in JavaScript, there are types of changes that Vue cannot detect. However,
there are ways to circumvent them to preserve reactivity.

#For Objects

Vue cannot detect property addition or deletion. Since Vue performs the getter/setter conversion

process during instance initialization, a property must be present in the data object in order for
Vue to convert it and make it reactive. For example:

var vm = new Vue
data:
a: 1

)

//vm.a’ is now reactive

vm.b =2
//'vm.b" is NOT reactive

Vue does not allow dynamically adding new root-level reactive properties to an already created
instance. However, it's possible to add reactive properties to a nested object using

the Vue.set(object, propertyName, value) method:
Vue.set(vm.someObject, 'b', 2

You can also use the VM. $set instance method, which is an alias to the global Vue.set:
this.$set(this.someObject, 'b', 2
Sometimes you may want to assign a number of properties to an existing object, for example

using Object.assign() or_.extend().However, new properties added to the object
will not trigger changes. In such cases, create a fresh object with properties from both the original
object and the mixin object:

// instead of ‘Object.assign(this.someObject, { a: 1, b: 2 })
this.someObject = Object.assign({}, this.someObject, { a: 1, b: 2
#For Arrays

Vue cannot detect the following changes to an array:

1. When you directly set an item with the index, e.g. vim. items [indexOfItem] =
newValue

2. When you modify the length of the array, e.g. vm. items. length = newlLength
For example:
var vm = new Vue
data:
items: ['a’. 'b", 'c'

)

vm.items[1] = 'x' // is NOT reactive
vm.items.length = 2 // is NOT reactive
To overcome caveat 1, both of the following will accomplish the same

asvm.items [indexOfItem] = newVa'lue, but will also trigger state updates in the
reactivity system:

// Vue.set
https://qgithere.com/doc/vue3.pdf Page 126 of 129

https://githere.com/doc/vue.pdf
https://v3.vuejs.org/guide/reactivity.html
https://v3.vuejs.org/guide/reactivity.html
https://v3.vuejs.org/guide/change-detection.html#for-objects
https://v3.vuejs.org/guide/change-detection.html#for-arrays

Vue 3

Vue . set(vm.items, indexOfltem, newValue

// Array.prototype.splice
vm.items.splice(indexOfltem, 1, newValue

You can also use the VM. $set instance method, which is an alias for the global Vue. set:
vm.$set(ivm.items, indexOfltem, newValue

To deal with caveat 2, you can use Sp Lice:
vm.items.splice(newlLength

#Declaring Reactive Properties

Since Vue doesn't allow dynamically adding root-level reactive properties, you have to initialize
component instances by declaring all root-level reactive data properties upfront, even with an
empty value:

var vm = new Vue
data:
// declare message with an empty value
message: "

template: '<div>{{ message div>'

)

// set ‘'message’ later
vm.message = 'Hello!'

If you don't declare MES Sage in the data option, Vue will warn you that the render function is
trying to access a property that doesn't exist.

There are technical reasons behind this restriction - it eliminates a class of edge cases in the
dependency tracking system, and also makes component instances play nicer with type checking
systems. But there is also an important consideration in terms of code maintainability:

the data object is like the schema for your component's state. Declaring all reactive properties

upfront makes the component code easier to understand when revisited later or read by another
developer.

#Async Update Queue

In case you haven't noticed yet, Vue performs DOM updates asynchronously. Whenever a data
change is observed, it will open a queue and buffer all the data changes that happen in the same
event loop. If the same watcher is triggered multiple times, it will be pushed into the queue only
once. This buffered de-duplication is important in avoiding unnecessary calculations and DOM
manipulations. Then, in the next event loop "tick", Vue flushes the queue and performs the actual
(already de-duped) work. Internally Vue tries

native Promise.then, MutationObserver, and setImmediate for the
asynchronous queuing and falls back to setTimeout (fn, 0).

For example, when you set V. someData = 'new value', the component will not re-
render immediately. It will update in the next "tick", when the queue is flushed. Most of the time
we don't need to care about this, but it can be tricky when you want to do something that
depends on the post-update DOM state. Although Vue.js generally encourages developers to
think in a "data-driven" fashion and avoid touching the DOM directly, sometimes it might be
necessary to get your hands dirty. In order to wait until Vue.js has finished updating the DOM after
a data change, you can use Vue.nextTick(callback) immediately after the data is
changed. The callback will be called after the DOM has been updated. For example:

div id="example">{{ message }}</div

https://qgithere.com/doc/vue3.pdf Page 127 of 129

https://vuejs.org/v2/api/#vm-set
https://v3.vuejs.org/guide/change-detection.html#declaring-reactive-properties
https://v3.vuejs.org/guide/change-detection.html#async-update-queue
https://githere.com/doc/vue.pdf

Vue 3

var vm = new Vue
el: '#example’
data:
message: '123'

)

vm.message = 'new message' // change data

vm.$el textContent === 'new message' // false
Vue . nextTick(function
vm.$el textContent === 'new message' // true

)
There is also the V. $nextTick () instance method, which is especially handy inside

components, because it doesn't need global VUe and its callback's th1s context will be
automatically bound to the current component instance:
Vue.component('example'
template: '{{ message span>'
data: function
return
message: 'not updated'

methods:
updateMessage: function
this.message = 'updated'
console.log(this $el textContent) // => 'not updated'
this.$nextTick(function
console.log(this. $el textContent) // => 'updated'

1
Since $nextTic k() returns a promise, you can achieve the same as the above using the
new ES2017 async/await syntax:
methods:
updateMessage: async function
this.message = 'updated'
console.log(this. $el textContent) // => 'not updated'
await this. $nextTick
console.log(this. $el textContent) // => 'updated'

https://qgithere.com/doc/vue3.pdf Page 128 of 129

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://githere.com/doc/vue.pdf

Vue 3

AXEFCRTEAXME, HEBZEIERETTH,
BRI EBOFNFIE: zwdg789
2020.11.09

https://qgithere.com/doc/vue3.pdf Page 129 of 129

https://githere.com/doc/vue.pdf

	Application & Component Instances
	Template Syntax
	Data Properties and Methods
	Computed Properties and Watchers
	Class and Style Bindings
	Conditional Rendering
	List Rendering
	Event Handling
	Form Input Bindings
	Components Basics
	Component Registration
	Props
	Non-Prop Attributes
	Custom Events
	Slots
	Provide / inject
	Dynamic & Async Components
	Template refs
	Handling Edge Cases
	Transitions & Animation
	Plugins
	Reactivity in Depth
	Computed and Watch
	Setup
	Lifecycle Hooks
	Provide / Inject
	Template Refs
	Rendering Mechanisms and Optimizations
	Change Detection Caveats in Vue 2

